Tao Shen, Min Li, Qingqing Bai, Hang Shi, Xinghua Wu, Yu Tian, Wenbo Wu, Duo Mao, Hai Yu
{"title":"A powerful organic photosensitizer for effective treatment of malignant tumor via activating antitumor immune response.","authors":"Tao Shen, Min Li, Qingqing Bai, Hang Shi, Xinghua Wu, Yu Tian, Wenbo Wu, Duo Mao, Hai Yu","doi":"10.1002/cbic.202400975","DOIUrl":null,"url":null,"abstract":"<p><p>Photodynamic therapy (PDT) has emerged as an innovative approach in cancer treatment, effectively inducing tumor cell death through light-triggered reactive oxygen species (ROS) generation. Additionally, PDT can also trigger antitumor immune responses, thereby reducing the risk of postoperative tumor recurrence. However, the development of highly efficient photosensitizers aimed at activating immune responses for comprehensive tumor eradication remains at an early stage. In this study, we developed a new organic photosensitizer, ThC, which exhibits excellent mitochondrial-targeting effect and significantly enhanced ROS production compared to traditional photosensitizers, such as Chlorin e6 (Ce6). Our findings demonstrate that ThC robustly induces immunogenic cell death (ICD) process in hepatic cancer cells, which could effectively transform immunologically \"cold\" tumors into \"hot\" tumors. Through in situ injection and subsequent white light irradiation, ThC achieved superior efficacy in eliminating subcutaneous hepatic tumors compared to Ce6 treatment. Immunological analyses revealed that ThC treatment led to elevated levels of CD4+ and CD8+ T cells, along with a reduction in immunosuppressive cell populations (Tregs and tumor-associated macrophages) within the tumor microenvironment. This study provides a novel therapeutic agent with significant potential for clinical translation in the treatment of malignant tumors.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e202400975"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202400975","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Photodynamic therapy (PDT) has emerged as an innovative approach in cancer treatment, effectively inducing tumor cell death through light-triggered reactive oxygen species (ROS) generation. Additionally, PDT can also trigger antitumor immune responses, thereby reducing the risk of postoperative tumor recurrence. However, the development of highly efficient photosensitizers aimed at activating immune responses for comprehensive tumor eradication remains at an early stage. In this study, we developed a new organic photosensitizer, ThC, which exhibits excellent mitochondrial-targeting effect and significantly enhanced ROS production compared to traditional photosensitizers, such as Chlorin e6 (Ce6). Our findings demonstrate that ThC robustly induces immunogenic cell death (ICD) process in hepatic cancer cells, which could effectively transform immunologically "cold" tumors into "hot" tumors. Through in situ injection and subsequent white light irradiation, ThC achieved superior efficacy in eliminating subcutaneous hepatic tumors compared to Ce6 treatment. Immunological analyses revealed that ThC treatment led to elevated levels of CD4+ and CD8+ T cells, along with a reduction in immunosuppressive cell populations (Tregs and tumor-associated macrophages) within the tumor microenvironment. This study provides a novel therapeutic agent with significant potential for clinical translation in the treatment of malignant tumors.
期刊介绍:
ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).