Defect Engineered Ru-CoMOF@MoS2 Heterointerface Facilitate Water Oxidation Process.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ChemSusChem Pub Date : 2024-12-29 DOI:10.1002/cssc.202402533
Boka Fikadu Banti, Mahendra Goddati, Njemuwa Nwaji, Juyoung Gwak, Birhanu Bayissa Gicha, Hyojin Kang, Sohrab Asgaran, Hee-Joon Chun, Jaebeom Lee
{"title":"Defect Engineered Ru-CoMOF@MoS<sub>2</sub> Heterointerface Facilitate Water Oxidation Process.","authors":"Boka Fikadu Banti, Mahendra Goddati, Njemuwa Nwaji, Juyoung Gwak, Birhanu Bayissa Gicha, Hyojin Kang, Sohrab Asgaran, Hee-Joon Chun, Jaebeom Lee","doi":"10.1002/cssc.202402533","DOIUrl":null,"url":null,"abstract":"<p><p>Catalyst design plays a critical role in ensuring sustainable and effective energy conversion. Electrocatalytic materials need to be able to control active sites and introduce defects in both acidic and alkaline electrolytes. Furthermore, producing efficient catalysts with a distinct surface structure advances our comprehension of the mechanism. Here, a defect-engineered heterointerface of ruthenium doped cobalt metal organic frame (Ru-CoMOF) core confined in MoS<sub>2</sub> is reported. A tailored design approach at room temperature was used to induce defects and form an electron transfer interface that enhanced the electrocatalytic performance. The Ru-CoMOF@MoS<sub>2</sub> heterointerface obtains a geometrical current density of 10 mA<sup>-2</sup> by providing hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) at small overpotentials of 240 and 289 mV, respectively. Density functional theory simulation shows that the Co-site maximizes the evolution of hydrogen intermediate energy for adsorption and enhances HER, while the Ru-site, on the other hand, is where OER happens. The heterointerface provides a channel for electron transfer and promotes reactions at the solid-liquid interface. The Ru-CoMOF@MoS<sub>2</sub> model exhibits improved OER and HER efficiency, indicating that it could be a valuable material for the production of water-alkaline and acidic catalysts.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402533"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402533","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Catalyst design plays a critical role in ensuring sustainable and effective energy conversion. Electrocatalytic materials need to be able to control active sites and introduce defects in both acidic and alkaline electrolytes. Furthermore, producing efficient catalysts with a distinct surface structure advances our comprehension of the mechanism. Here, a defect-engineered heterointerface of ruthenium doped cobalt metal organic frame (Ru-CoMOF) core confined in MoS2 is reported. A tailored design approach at room temperature was used to induce defects and form an electron transfer interface that enhanced the electrocatalytic performance. The Ru-CoMOF@MoS2 heterointerface obtains a geometrical current density of 10 mA-2 by providing hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) at small overpotentials of 240 and 289 mV, respectively. Density functional theory simulation shows that the Co-site maximizes the evolution of hydrogen intermediate energy for adsorption and enhances HER, while the Ru-site, on the other hand, is where OER happens. The heterointerface provides a channel for electron transfer and promotes reactions at the solid-liquid interface. The Ru-CoMOF@MoS2 model exhibits improved OER and HER efficiency, indicating that it could be a valuable material for the production of water-alkaline and acidic catalysts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缺陷工程Ru-CoMOF@MoS2异质界面促进水氧化过程。
催化剂设计在确保可持续和有效的能量转换中起着至关重要的作用。电催化材料需要能够控制活性位点并在酸性和碱性电解质中引入缺陷。此外,生产具有独特表面结构的高效催化剂有助于我们对机理的理解。本文报道了一种缺陷工程的钌掺杂钴金属有机框架(Ru-CoMOF)核心的异质界面,限制在MoS2中。采用量身定制的设计方法在室温下诱导缺陷并形成电子转移界面,从而提高电催化性能。Ru-CoMOF@MoS2异质界面分别在240和289 mV的小过电位下进行析氢反应(HER)和析氧反应(OER),得到了10 mA-2的几何电流密度。密度泛函数理论模拟表明,Co-site最大限度地提高了氢中间能的演化,提高了HER,而Ru-site则是OER发生的地方。异质界面为电子传递提供了通道,促进了固液界面的反应。Ru-CoMOF@MoS2模型显示出更高的OER和HER效率,表明它可能是生产水碱性和酸性催化剂的有价值的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
期刊最新文献
Access to Highly Functional and Polymerizable Carbonate-Drug Conjugates. Exploring the Potential of H-zeolites as Heterogeneous Catalysts for the Chemical Recycling of Polysaccharides and their Flexible Films. Scope and Limitations of the Use of Methanesulfonic Acid (MSA) as a Green Acid for Global Deprotection in Solid-Phase Peptide Synthesis. The Roles of Hydroxyl Radicals and Superoxide in Oxidizing Aqueous Benzyl Alcohol under Ultrasound Irradiation. Continuous-Flow Synthesis of BiVO4 Nanoparticles: From laboratory scale to practical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1