{"title":"Novel Cationic Bolaamphiphiles for Protein and DNA Binding, Gene Delivery, and Antimicrobial Applications.","authors":"Pabitra Mondal, Sadhana Roy, Dipanwita Patra, Somdeb Bose Dasgupta, Joykrishna Dey","doi":"10.1002/asia.202401582","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we have designed and developed a cationic bolaform C<sub>12</sub>-(2,3-dihydroxy-N, N-dimethyl-N-(2-ureidoethyl)propan-1-aminium chloride)<sub>2</sub> (C<sub>12</sub>(DDUPAC)<sub>2</sub>) that is derived from biocompatible molecules. The bolaform C<sub>12</sub>(DDUPAC)<sub>2</sub> has hydroxyl (OH) functionality at both the cationic head groups. The impact of head group structure on the self-assembly and effectiveness of gene transfection and antimicrobial activity was investigated and compared with that of the hydrochloride salt C<sub>12</sub>-(N, N-dimethyl-N-(2-ureidoethan-1-aminium chloride)<sub>2</sub> (C<sub>12</sub>(DUAC)<sub>2</sub>) of its precursor molecule. The formation of spherical as well as rod-like self-assembled structures was found to occur above a relatively low critical aggregation concentration (CAC) by the bolaforms. The results of calorimetric measurements demonstrated thermodynamically favorable aggregation in water. Interaction studies of the cationic bolaforms with the calf thymus DNA revealed stronger binding of C<sub>12</sub>(DDUPAC)<sub>2</sub> in comparison to C<sub>12</sub>(DUAC)<sub>2</sub>, which explained higher in vitro gene transfection efficiency of C<sub>12</sub>(DDUPAC)<sub>2</sub> than C<sub>12</sub>(DUAC)<sub>2</sub>. Both bolaforms interact weakly with the bovine serum albumin protein. MTT-based in vitro cytotoxicity assay was performed and both bolaforms were found to have marginal cytotoxicity. Further, both bolaforms exhibit advantageous antibacterial activity against E. coli and potent antifungal activity against Fusarium oxysporum at high dosages.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202401582"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202401582","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we have designed and developed a cationic bolaform C12-(2,3-dihydroxy-N, N-dimethyl-N-(2-ureidoethyl)propan-1-aminium chloride)2 (C12(DDUPAC)2) that is derived from biocompatible molecules. The bolaform C12(DDUPAC)2 has hydroxyl (OH) functionality at both the cationic head groups. The impact of head group structure on the self-assembly and effectiveness of gene transfection and antimicrobial activity was investigated and compared with that of the hydrochloride salt C12-(N, N-dimethyl-N-(2-ureidoethan-1-aminium chloride)2 (C12(DUAC)2) of its precursor molecule. The formation of spherical as well as rod-like self-assembled structures was found to occur above a relatively low critical aggregation concentration (CAC) by the bolaforms. The results of calorimetric measurements demonstrated thermodynamically favorable aggregation in water. Interaction studies of the cationic bolaforms with the calf thymus DNA revealed stronger binding of C12(DDUPAC)2 in comparison to C12(DUAC)2, which explained higher in vitro gene transfection efficiency of C12(DDUPAC)2 than C12(DUAC)2. Both bolaforms interact weakly with the bovine serum albumin protein. MTT-based in vitro cytotoxicity assay was performed and both bolaforms were found to have marginal cytotoxicity. Further, both bolaforms exhibit advantageous antibacterial activity against E. coli and potent antifungal activity against Fusarium oxysporum at high dosages.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).