Effect of Carbon Nanomaterials Incorporated Polymeric Membrane Separators for Energy Storage Devices.

IF 3.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Chemistry - An Asian Journal Pub Date : 2025-02-06 DOI:10.1002/asia.202401618
Md Emdad Hossain, Bashir Ahmed Johan, Syed Shaheen Shah, Muaz Abdallah, Mohammad Mizanur Rahman, Turki Nabieh Baroud, Md Abdul Aziz
{"title":"Effect of Carbon Nanomaterials Incorporated Polymeric Membrane Separators for Energy Storage Devices.","authors":"Md Emdad Hossain, Bashir Ahmed Johan, Syed Shaheen Shah, Muaz Abdallah, Mohammad Mizanur Rahman, Turki Nabieh Baroud, Md Abdul Aziz","doi":"10.1002/asia.202401618","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid expansion of the global population and technological advancements have heightened the need for efficient energy conversion and electrochemical energy storage. Electrochemical energy systems like batteries and supercapacitors have seen notable development to meet this demand. However, conventional polymeric membrane separators in these systems face challenges due to limited porosity and poor mechanical and thermal properties, reducing overall electrochemical performance. Researchers have incorporated nanoparticles into the polymer matrix to address these limitations and enhance separator properties. Carbon-based nanomaterials, in particular, have gained prominence due to their unique features, such as surface-dependent characteristics, size, porosity, morphology, and electrical conductivity. These properties make carbon-based nanomaterials advantageous in improving energy storage compared to conventional materials. Advanced carbon-doped polymeric membrane separators have emerged as a potential solution to the issues faced by conventional separators. Adding carbon nanoparticles, such as graphene-based materials and carbon nanotubes to the polymeric separators of batteries and supercapacitors has helped researchers solve problems and improve the electrochemical performance. This review article provides a state-of-the-art overview of carbon-doped polymeric membrane separators, their properties, fabrication processes, and performance in lithium batteries, as well as supercapacitors. It emphasizes advantages of these novel separator materials and suggests future research directions in this field.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202401618"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202401618","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid expansion of the global population and technological advancements have heightened the need for efficient energy conversion and electrochemical energy storage. Electrochemical energy systems like batteries and supercapacitors have seen notable development to meet this demand. However, conventional polymeric membrane separators in these systems face challenges due to limited porosity and poor mechanical and thermal properties, reducing overall electrochemical performance. Researchers have incorporated nanoparticles into the polymer matrix to address these limitations and enhance separator properties. Carbon-based nanomaterials, in particular, have gained prominence due to their unique features, such as surface-dependent characteristics, size, porosity, morphology, and electrical conductivity. These properties make carbon-based nanomaterials advantageous in improving energy storage compared to conventional materials. Advanced carbon-doped polymeric membrane separators have emerged as a potential solution to the issues faced by conventional separators. Adding carbon nanoparticles, such as graphene-based materials and carbon nanotubes to the polymeric separators of batteries and supercapacitors has helped researchers solve problems and improve the electrochemical performance. This review article provides a state-of-the-art overview of carbon-doped polymeric membrane separators, their properties, fabrication processes, and performance in lithium batteries, as well as supercapacitors. It emphasizes advantages of these novel separator materials and suggests future research directions in this field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemistry - An Asian Journal
Chemistry - An Asian Journal 化学-化学综合
CiteScore
7.00
自引率
2.40%
发文量
535
审稿时长
1.3 months
期刊介绍: Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics. Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews. A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal. Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).
期刊最新文献
Effect of Carbon Nanomaterials Incorporated Polymeric Membrane Separators for Energy Storage Devices. Ionic Device: From Neuromorphic Computing to Interfacing with the Brain. Regioselective C-H Thio- and Selenocyanation of Pyrazolo[1,5-a]pyrimidines. A Rhodamine-and-Naphthalimide Based Dual-chromophore for Fast and Sensitive Detection of Nerve-agent Mimic and Real Nerve Agents. Dipicolylaminofluorene Derivatives for Fluorescent Sensing of Copper(II) Ion and Glyphosate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1