{"title":"Redistribution of soil water by mature trees towards dry surface soils and uptake by seedlings in a temperate forest.","authors":"B D Hafner, B D Hesse, T E E Grams","doi":"10.1111/plb.13764","DOIUrl":null,"url":null,"abstract":"<p><p>Hydraulic redistribution is considered a crucial dryland mechanism that may be important in temperate environments facing increased soil drying-wetting cycles. We investigated redistribution of soil water from deeper, moist to surface, dry soils in a mature mixed European beech forest and whether redistributed water was used by neighbouring native seedlings. In two experiments, we tracked hydraulic redistribution via (1) <sup>2</sup>H labeling and (2) <sup>18</sup>O natural abundance. In a throughfall exclusion experiment, <sup>2</sup>H water was applied to 30-50 cm soil depth around mature beech trees and traced in soils, in coarse and fine roots, and in the rhizosphere. On five additional natural plots, the <sup>18</sup>O signal was measured in seedlings of European beech, Douglas fir, silver fir, sycamore maple, and Norway spruce at dawn and noon after a rain-free period. We found a significant enrichment in <sup>2</sup>H in surface soil fine roots of mature beech, and an indication for transfer of this water into their rhizosphere, suggesting hydraulic redistribution from deeper, moist to drier surface soils. On four of the five additional plots, δ<sup>18</sup>O of seedlings' root water was lower at dawn than at noon. This indicated that dawn root water originated from soil layers deeper than the seedlings' rooting depth, suggesting hydraulic redistribution by neighbouring mature trees. Hydraulic redistribution equated to about 10% of daily transpiration in mature beech trees, and contributed to root water in understory seedlings, emphasizing hydraulic redistribution as a notable mechanism in temperate forests. Transport mechanisms and potential of different tree species to redistribute water should be further addressed.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/plb.13764","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Hydraulic redistribution is considered a crucial dryland mechanism that may be important in temperate environments facing increased soil drying-wetting cycles. We investigated redistribution of soil water from deeper, moist to surface, dry soils in a mature mixed European beech forest and whether redistributed water was used by neighbouring native seedlings. In two experiments, we tracked hydraulic redistribution via (1) 2H labeling and (2) 18O natural abundance. In a throughfall exclusion experiment, 2H water was applied to 30-50 cm soil depth around mature beech trees and traced in soils, in coarse and fine roots, and in the rhizosphere. On five additional natural plots, the 18O signal was measured in seedlings of European beech, Douglas fir, silver fir, sycamore maple, and Norway spruce at dawn and noon after a rain-free period. We found a significant enrichment in 2H in surface soil fine roots of mature beech, and an indication for transfer of this water into their rhizosphere, suggesting hydraulic redistribution from deeper, moist to drier surface soils. On four of the five additional plots, δ18O of seedlings' root water was lower at dawn than at noon. This indicated that dawn root water originated from soil layers deeper than the seedlings' rooting depth, suggesting hydraulic redistribution by neighbouring mature trees. Hydraulic redistribution equated to about 10% of daily transpiration in mature beech trees, and contributed to root water in understory seedlings, emphasizing hydraulic redistribution as a notable mechanism in temperate forests. Transport mechanisms and potential of different tree species to redistribute water should be further addressed.
期刊介绍:
Plant Biology is an international journal of broad scope bringing together the different subdisciplines, such as physiology, molecular biology, cell biology, development, genetics, systematics, ecology, evolution, ecophysiology, plant-microbe interactions, and mycology.
Plant Biology publishes original problem-oriented full-length research papers, short research papers, and review articles. Discussion of hot topics and provocative opinion articles are published under the heading Acute Views. From a multidisciplinary perspective, Plant Biology will provide a platform for publication, information and debate, encompassing all areas which fall within the scope of plant science.