Unleashing the Power of Covalent Drugs for Protein Degradation.

IF 10.9 1区 医学 Q1 CHEMISTRY, MEDICINAL Medicinal Research Reviews Pub Date : 2025-01-21 DOI:10.1002/med.22101
Meng-Jie Fu, Hang Jin, Shao-Peng Wang, Liang Shen, Hong-Min Liu, Ying Liu, Yi-Chao Zheng, Xing-Jie Dai
{"title":"Unleashing the Power of Covalent Drugs for Protein Degradation.","authors":"Meng-Jie Fu, Hang Jin, Shao-Peng Wang, Liang Shen, Hong-Min Liu, Ying Liu, Yi-Chao Zheng, Xing-Jie Dai","doi":"10.1002/med.22101","DOIUrl":null,"url":null,"abstract":"<p><p>Targeted protein degradation (TPD) has emerged as a significant therapeutic approach for a variety of diseases, including cancer. Advances in TPD techniques, such as molecular glue (MG) and lysosome-dependent strategies, have shown substantial progress since the inception of the first PROTAC in 2001. The PROTAC methodology represents the forefront of TPD technology, with ongoing evaluation in more than 20 clinical trials for the treatment of diverse medical conditions. Two prominent PROTACs, ARV-471 and ARV-110, are currently undergoing phase III and II clinical trials, respectively. Traditional PROTACs are encountering obstacles such as limited binding affinity and a restricted range of E3 ligase ligands for facilitating the protein of interest (POI) degradation. Covalent medicines offer the potential to enhance PROTAC efficacy by enabling the targeting of previously considered \"undruggable\" shallow binding sites. Strategic alterations allow PROTAC to establish covalent connections with particular target proteins, including Kirsten rat sarcoma viral oncogene homolog (KRAS), Bruton's tyrosine kinase (BTK), epidermal growth factor receptor (EGFR), as well as E3 ligases such as DDB1 and CUL4 associated factor 16 (DCAF16) and Kelch-like ECH-associated protein 1 (Keap1). The concept of covalent degradation has also been utilized in various new forms of degraders, including covalent molecule glue (MG), in-cell click-formed proteolysis targeting chimera (CLIPTAC), HaloPROTAC, lysosome-targeting chimera (LYTAC) and GlueTAC. This review focuses on recent advancements in covalent degraders beyond covalent PROTACs and examines obstacles and future directions pertinent to this field.</p>","PeriodicalId":207,"journal":{"name":"Medicinal Research Reviews","volume":" ","pages":""},"PeriodicalIF":10.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Research Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/med.22101","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Targeted protein degradation (TPD) has emerged as a significant therapeutic approach for a variety of diseases, including cancer. Advances in TPD techniques, such as molecular glue (MG) and lysosome-dependent strategies, have shown substantial progress since the inception of the first PROTAC in 2001. The PROTAC methodology represents the forefront of TPD technology, with ongoing evaluation in more than 20 clinical trials for the treatment of diverse medical conditions. Two prominent PROTACs, ARV-471 and ARV-110, are currently undergoing phase III and II clinical trials, respectively. Traditional PROTACs are encountering obstacles such as limited binding affinity and a restricted range of E3 ligase ligands for facilitating the protein of interest (POI) degradation. Covalent medicines offer the potential to enhance PROTAC efficacy by enabling the targeting of previously considered "undruggable" shallow binding sites. Strategic alterations allow PROTAC to establish covalent connections with particular target proteins, including Kirsten rat sarcoma viral oncogene homolog (KRAS), Bruton's tyrosine kinase (BTK), epidermal growth factor receptor (EGFR), as well as E3 ligases such as DDB1 and CUL4 associated factor 16 (DCAF16) and Kelch-like ECH-associated protein 1 (Keap1). The concept of covalent degradation has also been utilized in various new forms of degraders, including covalent molecule glue (MG), in-cell click-formed proteolysis targeting chimera (CLIPTAC), HaloPROTAC, lysosome-targeting chimera (LYTAC) and GlueTAC. This review focuses on recent advancements in covalent degraders beyond covalent PROTACs and examines obstacles and future directions pertinent to this field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
释放共价药物对蛋白质降解的作用。
靶向蛋白降解(TPD)已成为包括癌症在内的多种疾病的重要治疗方法。自2001年第一届PROTAC成立以来,TPD技术的进步,如分子胶(MG)和溶酶体依赖策略,已经取得了实质性进展。PROTAC方法代表了TPD技术的前沿,目前正在20多个临床试验中进行评估,用于治疗各种疾病。两种著名的PROTACs, ARV-471和ARV-110,目前分别处于III期和II期临床试验阶段。传统的PROTACs面临着诸如有限的结合亲和力和限制范围的E3连接酶配体来促进感兴趣蛋白(POI)降解的障碍。共价药物有可能通过靶向以前认为“不可药物”的浅结合位点来提高PROTAC的疗效。策略性改变允许PROTAC与特定靶蛋白建立共价连接,包括Kirsten大鼠肉瘤病毒癌基因同源物(KRAS)、布鲁顿酪氨酸激酶(BTK)、表皮生长因子受体(EGFR),以及E3连接酶,如DDB1和CUL4相关因子16 (DCAF16)和kelch样ech相关蛋白1 (Keap1)。共价降解的概念也被用于各种新型降解物,包括共价分子胶(MG)、细胞内点击形成的蛋白水解靶向嵌合体(CLIPTAC)、HaloPROTAC、溶酶体靶向嵌合体(LYTAC)和GlueTAC。本文综述了共价PROTACs以外的共价降解剂的最新进展,并探讨了与该领域相关的障碍和未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
29.30
自引率
0.00%
发文量
52
审稿时长
2 months
期刊介绍: Medicinal Research Reviews is dedicated to publishing timely and critical reviews, as well as opinion-based articles, covering a broad spectrum of topics related to medicinal research. These contributions are authored by individuals who have made significant advancements in the field. Encompassing a wide range of subjects, suitable topics include, but are not limited to, the underlying pathophysiology of crucial diseases and disease vectors, therapeutic approaches for diverse medical conditions, properties of molecular targets for therapeutic agents, innovative methodologies facilitating therapy discovery, genomics and proteomics, structure-activity correlations of drug series, development of new imaging and diagnostic tools, drug metabolism, drug delivery, and comprehensive examinations of the chemical, pharmacological, pharmacokinetic, pharmacodynamic, and clinical characteristics of significant drugs.
期刊最新文献
Unleashing the Power of Covalent Drugs for Protein Degradation. Proteomics: An In-Depth Review on Recent Technical Advances and Their Applications in Biomedicine. Spatiotemporal Control Over Circadian Rhythms With Light. The Current Progress in the Quest for Vaccines Against the Semliki Forest Virus Complex. α-Synuclein in Parkinson's Disease: From Bench to Bedside.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1