ZmHB53, a Maize Homeodomain-Leucine Zipper I Transcription Factor Family Gene, Contributes to Abscisic Acid Sensitivity and Confers Seedling Drought Tolerance by Promoting the Activity of ZmPYL4.

IF 6 1区 生物学 Q1 PLANT SCIENCES Plant, Cell & Environment Pub Date : 2025-01-20 DOI:10.1111/pce.15394
Yuan Zhong, Xiaocui Yan, Nan Wang, Tinashe Zenda, Anyi Dong, Xiuzhen Zhai, Qian Yang, Huijun Duan
{"title":"ZmHB53, a Maize Homeodomain-Leucine Zipper I Transcription Factor Family Gene, Contributes to Abscisic Acid Sensitivity and Confers Seedling Drought Tolerance by Promoting the Activity of ZmPYL4.","authors":"Yuan Zhong, Xiaocui Yan, Nan Wang, Tinashe Zenda, Anyi Dong, Xiuzhen Zhai, Qian Yang, Huijun Duan","doi":"10.1111/pce.15394","DOIUrl":null,"url":null,"abstract":"<p><p>Plant-specific homeodomain-leucine zipper I (HD-Zip I) transcription factors (TFs) crucially regulate plant drought tolerance. However, their specific roles in maize (Zea mays L.) regulating drought tolerance remain largely unreported. Here, we screened a maize HD-Zip I TF family gene, ZmHB53, and clarified its role in drought stress. ZmHB53 overexpression maize plants exhibited sensitivity to abscisic acid (ABA), tolerant to polyethylene glycol (PEG 6000)-induced stress during germination, along with improved seedling drought resistance. Compared to the wild-type, ZmHB53 overexpression lines show higher water retention, biomass, and survival rates, and reduced water loss and stomatal size under drought, suggesting ZmHB53's role in drought adaptation. DNA affinity purification sequencing (DAP-Seq), yeast one hybrid, electrophoretic mobility shift assay (EMSA), and dual luciferase showed that ZmHB53 directly bound to and upregulated the expression of ABA receptor ZmPYL4. Meanwhile, transgenic plants overexpressing ZmPYL4 also exhibit ABA sensitivity and drought tolerance. The research results provide novel insights into the regulatory role of ZmHB53 and ZmPYL4 in enhancing maize's drought tolerance, establishing a foundation for future validation and potential application of ZmHB53 in strategies to improve maize resistance to drought.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15394","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Plant-specific homeodomain-leucine zipper I (HD-Zip I) transcription factors (TFs) crucially regulate plant drought tolerance. However, their specific roles in maize (Zea mays L.) regulating drought tolerance remain largely unreported. Here, we screened a maize HD-Zip I TF family gene, ZmHB53, and clarified its role in drought stress. ZmHB53 overexpression maize plants exhibited sensitivity to abscisic acid (ABA), tolerant to polyethylene glycol (PEG 6000)-induced stress during germination, along with improved seedling drought resistance. Compared to the wild-type, ZmHB53 overexpression lines show higher water retention, biomass, and survival rates, and reduced water loss and stomatal size under drought, suggesting ZmHB53's role in drought adaptation. DNA affinity purification sequencing (DAP-Seq), yeast one hybrid, electrophoretic mobility shift assay (EMSA), and dual luciferase showed that ZmHB53 directly bound to and upregulated the expression of ABA receptor ZmPYL4. Meanwhile, transgenic plants overexpressing ZmPYL4 also exhibit ABA sensitivity and drought tolerance. The research results provide novel insights into the regulatory role of ZmHB53 and ZmPYL4 in enhancing maize's drought tolerance, establishing a foundation for future validation and potential application of ZmHB53 in strategies to improve maize resistance to drought.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
玉米同源结构域-亮氨酸拉链I转录因子家族基因ZmHB53通过促进ZmPYL4活性参与脱落酸敏感性和幼苗抗旱性。
植物特异性同源结构域亮氨酸拉链I (HD-Zip I)转录因子(TFs)对植物抗旱性起着至关重要的调节作用。然而,它们在玉米(Zea mays L.)调节抗旱性中的具体作用在很大程度上仍未被报道。本研究筛选了玉米HD-Zip I TF家族基因ZmHB53,并阐明了该基因在干旱胁迫中的作用。ZmHB53过表达玉米植株在萌发过程中表现出对脱落酸(ABA)的敏感性,对聚乙二醇(PEG 6000)诱导的胁迫的耐受性,以及幼苗抗旱性的提高。与野生型相比,ZmHB53过表达系在干旱条件下表现出更高的保水率、生物量和存活率,减少了水分损失和气孔大小,表明ZmHB53在干旱适应中发挥了作用。DNA亲和纯化测序(DAP-Seq)、酵母1杂交、电泳迁移量转移试验(EMSA)和双荧光素酶检测结果表明,ZmHB53直接结合并上调ABA受体ZmPYL4的表达。同时,过表达ZmPYL4的转基因植株也表现出ABA敏感性和抗旱性。研究结果揭示了ZmHB53和ZmPYL4在提高玉米抗旱性中的调控作用,为进一步验证ZmHB53在提高玉米抗旱性策略中的潜在应用奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
期刊最新文献
Salicylic Acid Cooperates With Lignin and Sucrose Signals to Alleviate Waxy Maize Leaf Senescence Under Heat Stress. LNC159c Negatively Regulates Anthocyanin Biosynthesis via miR159c in Malus spectabilis Under Low Nitrogen. About How Nitrate Controls Nodulation: Will Soybean Spill the Bean? The Crucial Roles of Phloem Companion Cells in Response to Phosphorus Deficiency. Correction to "Nyctinastic Movement in Legumes: Developmental Mechanisms, Factors and Biological Significance".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1