{"title":"CRISPR analysis based on Pt@MOF dual-modal signal for multichannel fluorescence and visual detection of norovirus.","authors":"Zefeng Mao, Ruipeng Chen, Lei Huang, Shuyue Ren, Baolin Liu, Zhixian Gao","doi":"10.1016/j.bios.2025.117153","DOIUrl":null,"url":null,"abstract":"<p><p>Norovirus is a globally prevalent pathogen that causes acute viral gastroenteritis across all age groups, characterized by its high infectivity and low infectious dose. Consequently, the development of rapid, sensitive, and accurate detection technologies for norovirus presents a significant challenge. In this study, we demonstrate a combination of CRISPR-Cas-based reactions with Pt@MOF-linked immunoassay-like assays. This methodology enables both qualitative analysis and colorimetric readouts of Cas12a-mediated DNA/RNA detection at room temperature, as well as the generation of fluorescent signal readout through base deprotonation-induced Pt@MOF cleavage of a fluorogenic substrate. Furthermore, the integration of RPA amplification with noncanonical PAM-designed CRISPR significantly enhances the sensitivity and flexibility of detection, facilitating the extension of this strategy to other targets. Ultimately, the strategy was validated in spiked food samples with a 100% accuracy rate, consistent with RT-qPCR results. Collectively, this work showcases a viable approach for a dual-functional Pt@MOF-based CRISPR biosensing platform for bioanalysis and a flexible, universal strategy based on noncanonical PAM-designed gRNAs.</p>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"273 ","pages":"117153"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.bios.2025.117153","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Norovirus is a globally prevalent pathogen that causes acute viral gastroenteritis across all age groups, characterized by its high infectivity and low infectious dose. Consequently, the development of rapid, sensitive, and accurate detection technologies for norovirus presents a significant challenge. In this study, we demonstrate a combination of CRISPR-Cas-based reactions with Pt@MOF-linked immunoassay-like assays. This methodology enables both qualitative analysis and colorimetric readouts of Cas12a-mediated DNA/RNA detection at room temperature, as well as the generation of fluorescent signal readout through base deprotonation-induced Pt@MOF cleavage of a fluorogenic substrate. Furthermore, the integration of RPA amplification with noncanonical PAM-designed CRISPR significantly enhances the sensitivity and flexibility of detection, facilitating the extension of this strategy to other targets. Ultimately, the strategy was validated in spiked food samples with a 100% accuracy rate, consistent with RT-qPCR results. Collectively, this work showcases a viable approach for a dual-functional Pt@MOF-based CRISPR biosensing platform for bioanalysis and a flexible, universal strategy based on noncanonical PAM-designed gRNAs.
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.