{"title":"Nutritional value improvement of soybean meal through solid-state fermentation by proteases-enhanced Streptomyces sp. SCUT-3.","authors":"De-Lin Lu, Ming-Shu Zhang, Fu-Bao Wang, Zhen-Jie Dai, Zhi-Wei Li, Jing-Tao Ni, Wen-Jing Feng, Fu-Gen Zhang, Jun Dai, Hai-Ning Wang, Jun-Jin Deng, Xiao-Chun Luo","doi":"10.1016/j.ijbiomac.2025.140035","DOIUrl":null,"url":null,"abstract":"<p><p>With the global population expected to reach 10 billion by the 2050s, the demand for protein will surge, intensifying the need for high protein utilization efficiency. This study investigates the use of protease-enhanced Streptomyces sp. SCUT-3-3940 to degrade soybean meal (SBM) via solid-state fermentation (SSF). Optimized conditions resulted in anti-nutritional factors elimination and high soluble protein recovery (41.1 g/100 g), including bioactive oligopeptides (17.3 g/100 g) with antihypertensive and antioxidant properties. The degradation also produced free amino acids rich in essential amino acids, and other nutrient enhancing compounds. The fermented SBM (FSBM) exhibited superior digestibility, making it a valuable protein source. In a 60-day largemouth bass trial, replacing 10 % SBM with FSBM in feed significantly improved feed intake and weight gain. This method offers an efficient, eco-friendly, and cost-effective solution to address global protein shortages.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140035"},"PeriodicalIF":7.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.140035","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
With the global population expected to reach 10 billion by the 2050s, the demand for protein will surge, intensifying the need for high protein utilization efficiency. This study investigates the use of protease-enhanced Streptomyces sp. SCUT-3-3940 to degrade soybean meal (SBM) via solid-state fermentation (SSF). Optimized conditions resulted in anti-nutritional factors elimination and high soluble protein recovery (41.1 g/100 g), including bioactive oligopeptides (17.3 g/100 g) with antihypertensive and antioxidant properties. The degradation also produced free amino acids rich in essential amino acids, and other nutrient enhancing compounds. The fermented SBM (FSBM) exhibited superior digestibility, making it a valuable protein source. In a 60-day largemouth bass trial, replacing 10 % SBM with FSBM in feed significantly improved feed intake and weight gain. This method offers an efficient, eco-friendly, and cost-effective solution to address global protein shortages.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.