Haoran Huang , Xinyu Chen , Ying Wang , Ye Cheng , Xianzhi Wu , Caie Wu , Zhixin Xiong
{"title":"Analysis of volatile compounds and vintage discrimination of raw Pu-erh tea based on GC-IMS and GC–MS combined with data fusion","authors":"Haoran Huang , Xinyu Chen , Ying Wang , Ye Cheng , Xianzhi Wu , Caie Wu , Zhixin Xiong","doi":"10.1016/j.chroma.2025.465683","DOIUrl":null,"url":null,"abstract":"<div><div>Storage duration significantly influences the aroma profile of raw Pu-erh tea. To comprehensively investigate the differences in the volatile compounds across various vintages of raw Pu-erh teas and achieve the rapid classification of tea vintages, volatile compounds of raw Pu-erh tea with different years (2020–2023) were analyzed using a combination of gas chromatography-ion mobility spectrometry (GC-IMS) and gas chromatography-mass spectrometry (GC–MS). The datasets obtained from both techniques were integrated through low-level and mid-level data fusion strategies. Additionally, partial least squares discriminant analysis (PLS-DA) and random forest (RF) machine learning algorithms were applied to develop predictive models for the classification of tea storage durations. Consequently, GC-IMS and GC–MS identified 54 and 76 volatile compounds, respectively. Notably, the RF model, particularly when coupled with mid-level data fusion, exhibited exceptional predictive accuracy for tea storage time, reaching an accuracy of 100%. These findings provide a reference for elucidating the aroma characteristics of raw Pu-erh tea of different vintages and demonstrate that data fusion combined with machine learning has great potential for ensuring food quality.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1743 ","pages":"Article 465683"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography A","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021967325000329","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Storage duration significantly influences the aroma profile of raw Pu-erh tea. To comprehensively investigate the differences in the volatile compounds across various vintages of raw Pu-erh teas and achieve the rapid classification of tea vintages, volatile compounds of raw Pu-erh tea with different years (2020–2023) were analyzed using a combination of gas chromatography-ion mobility spectrometry (GC-IMS) and gas chromatography-mass spectrometry (GC–MS). The datasets obtained from both techniques were integrated through low-level and mid-level data fusion strategies. Additionally, partial least squares discriminant analysis (PLS-DA) and random forest (RF) machine learning algorithms were applied to develop predictive models for the classification of tea storage durations. Consequently, GC-IMS and GC–MS identified 54 and 76 volatile compounds, respectively. Notably, the RF model, particularly when coupled with mid-level data fusion, exhibited exceptional predictive accuracy for tea storage time, reaching an accuracy of 100%. These findings provide a reference for elucidating the aroma characteristics of raw Pu-erh tea of different vintages and demonstrate that data fusion combined with machine learning has great potential for ensuring food quality.
期刊介绍:
The Journal of Chromatography A provides a forum for the publication of original research and critical reviews on all aspects of fundamental and applied separation science. The scope of the journal includes chromatography and related techniques, electromigration techniques (e.g. electrophoresis, electrochromatography), hyphenated and other multi-dimensional techniques, sample preparation, and detection methods such as mass spectrometry. Contributions consist mainly of research papers dealing with the theory of separation methods, instrumental developments and analytical and preparative applications of general interest.