Humanized dual-targeting antibody-drug conjugates specific to MET and RON receptors as a pharmaceutical strategy for the treatment of cancers exhibiting phenotypic heterogeneity.

IF 6.9 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY Acta Pharmacologica Sinica Pub Date : 2025-01-21 DOI:10.1038/s41401-024-01458-7
Minghai Wang, Qi Ma, Sreedhar Reddy Suthe, Rachel E Hudson, Jing-Ying Pan, Constantinos Mikelis, Miao-Jin Zhu, Zhi-Gang Wu, Dan-Rong Shi, Hang-Ping Yao
{"title":"Humanized dual-targeting antibody-drug conjugates specific to MET and RON receptors as a pharmaceutical strategy for the treatment of cancers exhibiting phenotypic heterogeneity.","authors":"Minghai Wang, Qi Ma, Sreedhar Reddy Suthe, Rachel E Hudson, Jing-Ying Pan, Constantinos Mikelis, Miao-Jin Zhu, Zhi-Gang Wu, Dan-Rong Shi, Hang-Ping Yao","doi":"10.1038/s41401-024-01458-7","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer heterogeneity, characterized by diverse populations of tumorigenic cells, involves the occurrence of differential phenotypes with variable expressions of receptor tyrosine kinases. Aberrant expressions of mesenchymal-epithelial transition (MET) and recepteur d'origine nantais (RON) receptors contribute to the phenotypic heterogeneity of cancer cells, which poses a major therapeutic challenge. This study aims to develop a dual-targeting antibody-drug conjugate (ADC) that can act against both MET and RON for treating cancers with high phenotypic heterogeneity. Through immunohistochemical staining, we show that MET and RON expressions are highly heterogeneous with differential combinations in more than 40% of pancreatic and triple-negative breast cancer cases. This expressional heterogeneity provides the rationale to target both receptors for cancer therapy. A humanized bispecific monoclonal antibody specific to both MET and RON (PCMbs-MR) is generated through IgG recombination using monoclonal antibody sequences specific to MET and RON, respectively. Monomethyl auristatin E is conjugated to PCMbs-MR to generate a dual-targeting ADC (PCMdt-MMAE), with a drug-to-antibody ratio of 4:1. Various cancer cell lines were used to determine PCMdt-MMAE-mediated biological activities. The efficacy of PCMdt-MMAE in vivo is evaluated using multiple xenograft tumor models. PCMdt-MMAE shows a favorable pharmacokinetic profile, with a maximum tolerated dose of ~30 mg/kg in mice. Toxicological studies using Sprague-Dawley rats reveal that PCMdt-MMAE is relatively safe with slight-to-moderate, temporary, and reversible adverse events. Functionally, PCMdt-MMAE induces a robust internalization of both MET and RON and causes a large-scale cell death in cancer cell lines exhibiting MET and RON heterogeneous co-expressions. Both in vitro and in vivo studies demonstrate that the dual-targeting approach in the form of an ADC is highly effective with a long-lasting effect against tumors exhibiting MET/RON heterogeneous phenotypes. Hence, we can suggest that a dual-targeting ADC specific to both MET and RON can be employed as a novel therapeutic strategy for tumors with expressional phenotypic heterogeneity.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-024-01458-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer heterogeneity, characterized by diverse populations of tumorigenic cells, involves the occurrence of differential phenotypes with variable expressions of receptor tyrosine kinases. Aberrant expressions of mesenchymal-epithelial transition (MET) and recepteur d'origine nantais (RON) receptors contribute to the phenotypic heterogeneity of cancer cells, which poses a major therapeutic challenge. This study aims to develop a dual-targeting antibody-drug conjugate (ADC) that can act against both MET and RON for treating cancers with high phenotypic heterogeneity. Through immunohistochemical staining, we show that MET and RON expressions are highly heterogeneous with differential combinations in more than 40% of pancreatic and triple-negative breast cancer cases. This expressional heterogeneity provides the rationale to target both receptors for cancer therapy. A humanized bispecific monoclonal antibody specific to both MET and RON (PCMbs-MR) is generated through IgG recombination using monoclonal antibody sequences specific to MET and RON, respectively. Monomethyl auristatin E is conjugated to PCMbs-MR to generate a dual-targeting ADC (PCMdt-MMAE), with a drug-to-antibody ratio of 4:1. Various cancer cell lines were used to determine PCMdt-MMAE-mediated biological activities. The efficacy of PCMdt-MMAE in vivo is evaluated using multiple xenograft tumor models. PCMdt-MMAE shows a favorable pharmacokinetic profile, with a maximum tolerated dose of ~30 mg/kg in mice. Toxicological studies using Sprague-Dawley rats reveal that PCMdt-MMAE is relatively safe with slight-to-moderate, temporary, and reversible adverse events. Functionally, PCMdt-MMAE induces a robust internalization of both MET and RON and causes a large-scale cell death in cancer cell lines exhibiting MET and RON heterogeneous co-expressions. Both in vitro and in vivo studies demonstrate that the dual-targeting approach in the form of an ADC is highly effective with a long-lasting effect against tumors exhibiting MET/RON heterogeneous phenotypes. Hence, we can suggest that a dual-targeting ADC specific to both MET and RON can be employed as a novel therapeutic strategy for tumors with expressional phenotypic heterogeneity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对MET和RON受体特异性的人源化双靶向抗体-药物偶联物作为治疗表现出表型异质性的癌症的药物策略。
癌症的异质性,以不同的致瘤细胞群体为特征,涉及不同表型的发生和受体酪氨酸激酶的不同表达。间充质上皮转化(MET)和原受体nantais (RON)受体的异常表达导致了癌细胞的表型异质性,这给治疗带来了重大挑战。本研究旨在开发一种双靶向抗体-药物偶联物(ADC),它可以同时作用于MET和RON,用于治疗具有高表型异质性的癌症。通过免疫组织化学染色,我们发现MET和RON的表达在超过40%的胰腺癌和三阴性乳腺癌病例中具有高度异质性和差异组合。这种表达异质性为靶向两种受体进行癌症治疗提供了理论依据。分别利用MET和RON特异性单克隆抗体序列,通过IgG重组生成人源化的MET和RON双特异性单克隆抗体(pcmb - mr)。单甲基auristatin E与PCMbs-MR偶联产生双靶向ADC (PCMdt-MMAE),药抗比为4:1。利用不同的癌细胞系测定pcmdt - mmae介导的生物活性。利用多种异种移植肿瘤模型评估PCMdt-MMAE在体内的疗效。PCMdt-MMAE表现出良好的药代动力学特征,小鼠的最大耐受剂量为~30 mg/kg。使用Sprague-Dawley大鼠进行的毒理学研究表明,PCMdt-MMAE相对安全,具有轻微至中度、暂时和可逆的不良事件。在功能上,PCMdt-MMAE诱导MET和RON的强烈内化,并在MET和RON异质共表达的癌细胞系中导致大规模细胞死亡。体外和体内研究都表明,ADC形式的双靶向方法对具有MET/RON异质性表型的肿瘤非常有效,具有持久的效果。因此,我们可以建议,针对MET和RON的双靶向ADC可以作为一种新的治疗策略,用于具有表达表型异质性的肿瘤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Pharmacologica Sinica
Acta Pharmacologica Sinica 医学-化学综合
CiteScore
15.10
自引率
2.40%
发文量
4365
审稿时长
2 months
期刊介绍: APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.
期刊最新文献
Cannabinoid-2 receptor depletion promotes non-alcoholic fatty liver disease in mice via disturbing gut microbiota and tryptophan metabolism. CXCR2 modulates chronic pain comorbid depression in mice by regulating adult neurogenesis in the ventral dentate gyrus. Circular RNA hsa_circ_0000288 protects against epilepsy in mice by binding to and stabilizing caprin1 protein. Krüppel-like factor 9 alleviates Alzheimer's disease via IDE-mediated Aβ degradation. Co-inhibition of RAGE and TLR4 sensitizes pancreatic cancer to irreversible electroporation in mice by disrupting autophagy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1