{"title":"Mo and Sn exposure associated with the increased of bone mineral density.","authors":"Jihui Wang, Xiyan Zhang, Yuzhuo Zeng, Jing Xu, Yong Zhang, Xingwen Lu, Fei Wang","doi":"10.1007/s10534-024-00662-6","DOIUrl":null,"url":null,"abstract":"<p><p>Bone mineral density (BMD) measured by T-score is strongly associated with bone health, but research on its association with metals in humans body remains limited. To investigate the relationship between metal exposure and BMD, numbers of 159 participants in eastern China were studied. Urine and blood samples were collected and levels of 20 metals in the samples were measured using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Binary Logistic Regression model (BLR) and Generalized Linear Models (GLM) were used to explore the relationship between metals and BMD. Bayesian Kernel Machine Regression (BKMR) model was further used to explore the effect of multiple metal interactions on BMD. Six metals (Mn, Co, As, Se, Mo, Cd) were selected and the concentrations in blood and urine were compared using Wilcoxon and Spearman tests. In the single-metal model, BLR and GLM commonly showed positive significant correlations between four metals (As, Mo, Se, Sn) in urine and BMD. Strong correlations between five metals (Mn, Co, As, Se, Mo) in blood and urine were observed (P ≤ 0.05). The BKMR model indicated a predominant synergistic effect of urine Mo and Sn, increased co-exposure to these metals is associated with a higher trend of BMD. These findings suggest that exposure to metals is associated with an increased level of BMD in humans. To better understand the impact of metals on bone health, further investigation into the common roles of these metals and their interactions is needed.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometals","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10534-024-00662-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bone mineral density (BMD) measured by T-score is strongly associated with bone health, but research on its association with metals in humans body remains limited. To investigate the relationship between metal exposure and BMD, numbers of 159 participants in eastern China were studied. Urine and blood samples were collected and levels of 20 metals in the samples were measured using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Binary Logistic Regression model (BLR) and Generalized Linear Models (GLM) were used to explore the relationship between metals and BMD. Bayesian Kernel Machine Regression (BKMR) model was further used to explore the effect of multiple metal interactions on BMD. Six metals (Mn, Co, As, Se, Mo, Cd) were selected and the concentrations in blood and urine were compared using Wilcoxon and Spearman tests. In the single-metal model, BLR and GLM commonly showed positive significant correlations between four metals (As, Mo, Se, Sn) in urine and BMD. Strong correlations between five metals (Mn, Co, As, Se, Mo) in blood and urine were observed (P ≤ 0.05). The BKMR model indicated a predominant synergistic effect of urine Mo and Sn, increased co-exposure to these metals is associated with a higher trend of BMD. These findings suggest that exposure to metals is associated with an increased level of BMD in humans. To better understand the impact of metals on bone health, further investigation into the common roles of these metals and their interactions is needed.
期刊介绍:
BioMetals is the only established journal to feature the important role of metal ions in chemistry, biology, biochemistry, environmental science, and medicine. BioMetals is an international, multidisciplinary journal singularly devoted to the rapid publication of the fundamental advances of both basic and applied research in this field. BioMetals offers a forum for innovative research and clinical results on the structure and function of:
- metal ions
- metal chelates,
- siderophores,
- metal-containing proteins
- biominerals in all biosystems.
- BioMetals rapidly publishes original articles and reviews.
BioMetals is a journal for metals researchers who practice in medicine, biochemistry, pharmacology, toxicology, microbiology, cell biology, chemistry, and plant physiology who are based academic, industrial and government laboratories.