Yinglin He, Chang Fang, Zeqian Zeng, Bing Fu, Ziyi Cui, Jun Wang, Huirong Yang
{"title":"Screening and isolation of polyethylene microplastic degrading bacteria from mangrove sediments in southern China.","authors":"Yinglin He, Chang Fang, Zeqian Zeng, Bing Fu, Ziyi Cui, Jun Wang, Huirong Yang","doi":"10.1016/j.scitotenv.2025.178488","DOIUrl":null,"url":null,"abstract":"<p><p>Mangrove sediments in southern China are a large reservoir for microplastics (MPs). In particular, polyethylene microplastics (PE-MPs) are environmentally toxic and have accumulated in large quantities in these sediments, posing a potential threat to the overall mangrove and the organisms that inhabit it. We screened sediments from 5 mangrove sites and identified a potential source of PE-MP degrading bacteria. We purified the bacterial strains Acinetobacter venetianus E1-1, Serratia marcescens E1-2, Chryseobacterium cucumeris E1-3 and Bacillus albus E1-4 from P1 that were able to reduce the mass of the 75 μm PE-MPs substrate by 3.67 to 6.59 %, respectively and use it as a sole carbon source. The degradation was accompanied by surface deformation of the MPs and introduction of polar oxygen-containing carbonyl and carboxylic acid functional groups thereby decreasing the hydrophobicity of the substrate. Whole-genome sequencing of S. marcescens E1-2, the most effective degrader, revealed it possesses a variety of enzymes and metabolic pathways related to PE degradation. Our results indicated that the PE-MP degrading bacteria isolated from screened mangrove sediments represent an effective strategy for in situ MP pollution remediation and uncovering mechanisms associated with PE degradation.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"962 ","pages":"178488"},"PeriodicalIF":8.2000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2025.178488","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Mangrove sediments in southern China are a large reservoir for microplastics (MPs). In particular, polyethylene microplastics (PE-MPs) are environmentally toxic and have accumulated in large quantities in these sediments, posing a potential threat to the overall mangrove and the organisms that inhabit it. We screened sediments from 5 mangrove sites and identified a potential source of PE-MP degrading bacteria. We purified the bacterial strains Acinetobacter venetianus E1-1, Serratia marcescens E1-2, Chryseobacterium cucumeris E1-3 and Bacillus albus E1-4 from P1 that were able to reduce the mass of the 75 μm PE-MPs substrate by 3.67 to 6.59 %, respectively and use it as a sole carbon source. The degradation was accompanied by surface deformation of the MPs and introduction of polar oxygen-containing carbonyl and carboxylic acid functional groups thereby decreasing the hydrophobicity of the substrate. Whole-genome sequencing of S. marcescens E1-2, the most effective degrader, revealed it possesses a variety of enzymes and metabolic pathways related to PE degradation. Our results indicated that the PE-MP degrading bacteria isolated from screened mangrove sediments represent an effective strategy for in situ MP pollution remediation and uncovering mechanisms associated with PE degradation.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.