{"title":"Hexagonal Hollow Core PCF-Based Blood Components Sensing: Design and Simulation.","authors":"Md Alamin Hossain, Md Parash Chowdhury, Md Mahabub Hossain, Mahfujur Rahman, Md Selim Hossain","doi":"10.1007/s12013-025-01672-y","DOIUrl":null,"url":null,"abstract":"<p><p>Blood components play a crucial role in maintaining human health and accurately detecting them is essential for medical diagnostics. A cutting-edge sensor utilizing PCF revealed to precisely identify a wide range of blood components with WBCs (white blood cells), RBCs (red blood cells), HB (hemoglobin), platelets, and plasma. A numerical analysis was performed using COMSOL Multiphysics software to assess the capabilities of the sensor. The sensor design features a hexagonal hollow core-based PCF with a circled air hole operating wavelength from 1.0 μm to 3.0 μm. This innovative PCF sensor exhibits outstanding sensitivity, achieving relative sensitivity values of approximately 97.45% for WBCs, 99.13% for HB, 99.61% for RBCs, 93.44% for plasma, and an impressive 99.42% for platelets, all at a wavelength of 1 μm in its optimized design and this design ensures reliable and highly accurate measurements for various blood components. The corresponding effective areas are 3.32 × 10<sup>-11</sup> m<sup>2</sup> for WBCs, 2.91 × 10<sup>-11</sup> m<sup>2</sup> for HB, 2.72 × 10<sup>-11</sup> m<sup>2</sup> for RBCs, 3.74 × 10<sup>-11</sup> m<sup>2</sup> for plasma, and 2.79 × 10<sup>-11</sup> m<sup>2</sup> for platelets, respectively. Furthermore, The sensor demonstrates exceptional performance with remarkably low confinement loss values of 3.032 × 10<sup>-9</sup> dB/m for WBCs, 2.947 × 10<sup>-9</sup> dB/m for HB, 3.147 × 10<sup>-9</sup> dB/m for RBCs, 3.112 × 10<sup>-9</sup> dB/m for plasma, and 3.205 × 10<sup>-9</sup> dB/m for platelets, respectively. Additionally, the effective material loss is 5.43 × 10<sup>-3</sup> cm<sup>-1</sup> for WBCs, 2.19 × 10<sup>-3</sup> cm<sup>-1</sup> for HB, 1.27 × 10<sup>-3</sup> cm<sup>-1</sup> for RBCs, 1.32 × 10<sup>-3</sup> cm<sup>-1</sup> for plasma, and 1.58 × 10<sup>-3</sup> cm<sup>-1</sup> for platelets. Therefore, this biosensor's outstanding sensing capabilities and innovative design make it ideal for industrial and medical applications, ensuring reliability and ease of use. The PCF-based sensor has great potential to transform optical communication applications. Its prosperity model and high sensitivity build it a valued device with the promise of addressing critical challenges in the place of biology, medicine, and communication systems. The sensor features Teflon (tetrafluoroethylene) as its background material, with air holes optimized in a five-ring structure for maximum efficiency and it is the ideal fiber material, offering excellent relative sensitivity and low confinement loss (CL). More than that, 3D printing is the ideal method for fabricating hexagonal hollow-core photonic crystal fiber (PCF) structures, allowing for the effective production of the advanced biosensor design.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-025-01672-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Blood components play a crucial role in maintaining human health and accurately detecting them is essential for medical diagnostics. A cutting-edge sensor utilizing PCF revealed to precisely identify a wide range of blood components with WBCs (white blood cells), RBCs (red blood cells), HB (hemoglobin), platelets, and plasma. A numerical analysis was performed using COMSOL Multiphysics software to assess the capabilities of the sensor. The sensor design features a hexagonal hollow core-based PCF with a circled air hole operating wavelength from 1.0 μm to 3.0 μm. This innovative PCF sensor exhibits outstanding sensitivity, achieving relative sensitivity values of approximately 97.45% for WBCs, 99.13% for HB, 99.61% for RBCs, 93.44% for plasma, and an impressive 99.42% for platelets, all at a wavelength of 1 μm in its optimized design and this design ensures reliable and highly accurate measurements for various blood components. The corresponding effective areas are 3.32 × 10-11 m2 for WBCs, 2.91 × 10-11 m2 for HB, 2.72 × 10-11 m2 for RBCs, 3.74 × 10-11 m2 for plasma, and 2.79 × 10-11 m2 for platelets, respectively. Furthermore, The sensor demonstrates exceptional performance with remarkably low confinement loss values of 3.032 × 10-9 dB/m for WBCs, 2.947 × 10-9 dB/m for HB, 3.147 × 10-9 dB/m for RBCs, 3.112 × 10-9 dB/m for plasma, and 3.205 × 10-9 dB/m for platelets, respectively. Additionally, the effective material loss is 5.43 × 10-3 cm-1 for WBCs, 2.19 × 10-3 cm-1 for HB, 1.27 × 10-3 cm-1 for RBCs, 1.32 × 10-3 cm-1 for plasma, and 1.58 × 10-3 cm-1 for platelets. Therefore, this biosensor's outstanding sensing capabilities and innovative design make it ideal for industrial and medical applications, ensuring reliability and ease of use. The PCF-based sensor has great potential to transform optical communication applications. Its prosperity model and high sensitivity build it a valued device with the promise of addressing critical challenges in the place of biology, medicine, and communication systems. The sensor features Teflon (tetrafluoroethylene) as its background material, with air holes optimized in a five-ring structure for maximum efficiency and it is the ideal fiber material, offering excellent relative sensitivity and low confinement loss (CL). More than that, 3D printing is the ideal method for fabricating hexagonal hollow-core photonic crystal fiber (PCF) structures, allowing for the effective production of the advanced biosensor design.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.