Gait patterns in unstable older patients related with vestibular hypofunction. Preliminary results in assessment with time-frequency analysis.

IF 1.2 4区 医学 Q3 OTORHINOLARYNGOLOGY Acta Oto-Laryngologica Pub Date : 2025-01-22 DOI:10.1080/00016489.2025.2450221
Francisco de Izaguirre, Mariana Del Castillo, Enrique D Ferreira, Hamlet Suárez
{"title":"Gait patterns in unstable older patients related with vestibular hypofunction. Preliminary results in assessment with time-frequency analysis.","authors":"Francisco de Izaguirre, Mariana Del Castillo, Enrique D Ferreira, Hamlet Suárez","doi":"10.1080/00016489.2025.2450221","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Gait instability and falls significantly impact life quality and morbi-mortality in elderly populations. Early diagnosis of gait disorders is one of the most effective approaches to minimize severe injuries.</p><p><strong>Objective: </strong>To find a gait instability pattern in older adults through an image representation of data collected by a single sensor.</p><p><strong>Methods: </strong>A sample of 13 older adults (71-85 years old) with instability by vestibular hypofunction is compared to a sample of 19 adults (21-75 years old) without instability and normal vestibular function. Image representations of the gait signals acquired on a specific walk path were generated using a continuous wavelet transform and analyzed as a texture using grey level co-occurrence matrix metrics as features. A support vector machine (SVM) algorithm was used to discriminate subjects.</p><p><strong>Results: </strong>First results show a good classification performance. According to analysis of extracted features, most information relevant to instability is concentrated in the medio-lateral acceleration (X axis) and the frontal plane angular rotation (Z axis gyroscope). Performing a ten-fold cross-validation through the first ten seconds of the sample dataset, the algorithm achieves a 92,3 F1 score corresponding to 12 true-positives, 1 false positive and 1 false negative.</p><p><strong>Discussion: </strong>This preliminary report suggests that the method has potential use in assessing gait disorders in controlled and non-controlled environments. It suggests that deep learning methods could be explored given the availability of a larger population and data samples.</p>","PeriodicalId":6880,"journal":{"name":"Acta Oto-Laryngologica","volume":" ","pages":"1-6"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Oto-Laryngologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/00016489.2025.2450221","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OTORHINOLARYNGOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Gait instability and falls significantly impact life quality and morbi-mortality in elderly populations. Early diagnosis of gait disorders is one of the most effective approaches to minimize severe injuries.

Objective: To find a gait instability pattern in older adults through an image representation of data collected by a single sensor.

Methods: A sample of 13 older adults (71-85 years old) with instability by vestibular hypofunction is compared to a sample of 19 adults (21-75 years old) without instability and normal vestibular function. Image representations of the gait signals acquired on a specific walk path were generated using a continuous wavelet transform and analyzed as a texture using grey level co-occurrence matrix metrics as features. A support vector machine (SVM) algorithm was used to discriminate subjects.

Results: First results show a good classification performance. According to analysis of extracted features, most information relevant to instability is concentrated in the medio-lateral acceleration (X axis) and the frontal plane angular rotation (Z axis gyroscope). Performing a ten-fold cross-validation through the first ten seconds of the sample dataset, the algorithm achieves a 92,3 F1 score corresponding to 12 true-positives, 1 false positive and 1 false negative.

Discussion: This preliminary report suggests that the method has potential use in assessing gait disorders in controlled and non-controlled environments. It suggests that deep learning methods could be explored given the availability of a larger population and data samples.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与前庭功能减退相关的不稳定老年患者的步态模式。时频分析的初步评价结果。
背景:步态不稳定和跌倒显著影响老年人的生活质量和发病率-死亡率。早期诊断步态障碍是减少严重损伤的最有效方法之一。目的:通过单个传感器采集数据的图像表示,发现老年人步态不稳定模式。方法:将13例因前庭功能减退而不稳定的老年人(71-85岁)与19例无不稳定且前庭功能正常的成年人(21-75岁)进行比较。采用连续小波变换生成特定行走路径上步态信号的图像表示,并以灰度共生矩阵度量为特征进行纹理分析。采用支持向量机(SVM)算法对受试者进行识别。结果:第一种方法具有良好的分类性能。根据提取的特征分析,与失稳相关的大部分信息集中在中侧向加速度(X轴)和前平面角旋转(Z轴陀螺仪)。通过样本数据集的前十秒进行十倍交叉验证,该算法获得了92,3 F1分数,对应于12个真阳性,1个假阳性和1个假阴性。讨论:这一初步报告表明,该方法在评估受控和非受控环境下的步态障碍方面具有潜在的用途。这表明,考虑到更大的人口和数据样本的可用性,可以探索深度学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Oto-Laryngologica
Acta Oto-Laryngologica 医学-耳鼻喉科学
CiteScore
2.50
自引率
0.00%
发文量
99
审稿时长
3-6 weeks
期刊介绍: Acta Oto-Laryngologica is a truly international journal for translational otolaryngology and head- and neck surgery. The journal presents cutting-edge papers on clinical practice, clinical research and basic sciences. Acta also bridges the gap between clinical and basic research.
期刊最新文献
Translation and linguistic validation of the Glasgow Benefit Inventory into Danish. Correction. Scala tympani drill-out technique for oval window atresia with malformed facial nerve:update. The effect of caffeic acid phenethyl ester on facial nerve regeneration. Gait patterns in unstable older patients related with vestibular hypofunction. Preliminary results in assessment with time-frequency analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1