The ANFIS-RSM based multi-objective optimization and modelling of ultrasound-assisted extraction of polyphenols from jamun fruit (Syzygium cumini).

IF 8.7 1区 化学 Q1 ACOUSTICS Ultrasonics Sonochemistry Pub Date : 2025-01-12 DOI:10.1016/j.ultsonch.2025.107227
Mohammad Ganje, Somayyeh Gharibi, Fatemeh Nejatpour, Maryam Deilamipour, Kimia Goshadehrou, Sahra Saberyan, Gholamreza Abdi
{"title":"The ANFIS-RSM based multi-objective optimization and modelling of ultrasound-assisted extraction of polyphenols from jamun fruit (Syzygium cumini).","authors":"Mohammad Ganje, Somayyeh Gharibi, Fatemeh Nejatpour, Maryam Deilamipour, Kimia Goshadehrou, Sahra Saberyan, Gholamreza Abdi","doi":"10.1016/j.ultsonch.2025.107227","DOIUrl":null,"url":null,"abstract":"<p><p>Given their potential as natural substitutes for artificial additives and their health advantages, the extraction of bioactive substances like polyphenols from plant sources is becoming more and more significant. Nevertheless, it is still difficult to achieve effective extraction with minimal time and energy. In order to optimize polyphenol extraction from ripe jamun fruit pulp, including traditional and ultrasound-assisted methods, this study assessed the prediction power of response surface methodology (RSM) and adaptive neuro-fuzzy inference systems (ANFIS). It examined how temperature, process time, solvent type, and extraction method affected the yield of extracted polyphenols. Analysis of variance (ANOVA) indicated that solvent type (F-value = 292.15) was the most significant factor influencing polyphenol extraction. Numerical optimization identified optimal conditions for maximizing phenolic compound extraction: a process temperature of 45 °C, a duration of 65 min under ultrasound, using methanol as the solvent (desirability of 0.935 and a realization rate of 95 % of the maximum possible). Imposing minimum temperature and process time conditions will yield the same optimal process parameters as before, achieving 89 % of the maximum possible while significantly reducing the process time from 65 min to just 5 min (desirability 0.953). For each of the six process-solver conditions, optimal ANFIS models were determined by analyzing the number and type of input membership functions, the output membership function, and the selected optimization and defuzzification methods, based on the highest correlation between actual and predicted data, along with the lowest error rates. Statistical analysis confirmed the effectiveness of both RSM and ANFIS in modeling polyphenol extraction from ripe jamun fruit. Error indices demonstrated that ANFIS (R<sup>2</sup> = 0.8490-0.9989) outperformed RSM (R<sup>2</sup> = 0.9265) in predictive capability, underscoring the relative superiority of ANFIS.</p>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"113 ","pages":"107227"},"PeriodicalIF":8.7000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ultsonch.2025.107227","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given their potential as natural substitutes for artificial additives and their health advantages, the extraction of bioactive substances like polyphenols from plant sources is becoming more and more significant. Nevertheless, it is still difficult to achieve effective extraction with minimal time and energy. In order to optimize polyphenol extraction from ripe jamun fruit pulp, including traditional and ultrasound-assisted methods, this study assessed the prediction power of response surface methodology (RSM) and adaptive neuro-fuzzy inference systems (ANFIS). It examined how temperature, process time, solvent type, and extraction method affected the yield of extracted polyphenols. Analysis of variance (ANOVA) indicated that solvent type (F-value = 292.15) was the most significant factor influencing polyphenol extraction. Numerical optimization identified optimal conditions for maximizing phenolic compound extraction: a process temperature of 45 °C, a duration of 65 min under ultrasound, using methanol as the solvent (desirability of 0.935 and a realization rate of 95 % of the maximum possible). Imposing minimum temperature and process time conditions will yield the same optimal process parameters as before, achieving 89 % of the maximum possible while significantly reducing the process time from 65 min to just 5 min (desirability 0.953). For each of the six process-solver conditions, optimal ANFIS models were determined by analyzing the number and type of input membership functions, the output membership function, and the selected optimization and defuzzification methods, based on the highest correlation between actual and predicted data, along with the lowest error rates. Statistical analysis confirmed the effectiveness of both RSM and ANFIS in modeling polyphenol extraction from ripe jamun fruit. Error indices demonstrated that ANFIS (R2 = 0.8490-0.9989) outperformed RSM (R2 = 0.9265) in predictive capability, underscoring the relative superiority of ANFIS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ultrasonics Sonochemistry
Ultrasonics Sonochemistry 化学-化学综合
CiteScore
15.80
自引率
11.90%
发文量
361
审稿时长
59 days
期刊介绍: Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels. Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.
期刊最新文献
Corrigendum to "Ultrasound pre-fractured casein and in-situ formation of high internal phase emulsions" [Ultrason. Sonochem. 64 (2020) 104916]. Accelerating maturation of Chinese rice wine by using a 20 L scale multi-sweeping-frequency mode ultrasonic reactor and its mechanism exploration Effect of triple-frequency sono-germination and soaking treatments on techno-functional characteristics of barley Ultrasonic-assisted extraction of luteolin from peanut shells using ionic liquid and its molecular mechanism. The ANFIS-RSM based multi-objective optimization and modelling of ultrasound-assisted extraction of polyphenols from jamun fruit (Syzygium cumini).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1