Peptidoglycan isolated from the fruit of Lycium barbarum alleviates liver fibrosis in mice by regulating the TGF-β/Smad7 signaling and gut microbiota.

IF 6.9 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY Acta Pharmacologica Sinica Pub Date : 2025-01-20 DOI:10.1038/s41401-024-01454-x
Ying-Min Nie, Wan-Qi Zhou, Ting Niu, Meng-Fei Mao, Yu-Xue Zhan, Yun Li, Kai-Ping Wang, Mei-Xia Li, Kan Ding
{"title":"Peptidoglycan isolated from the fruit of Lycium barbarum alleviates liver fibrosis in mice by regulating the TGF-β/Smad7 signaling and gut microbiota.","authors":"Ying-Min Nie, Wan-Qi Zhou, Ting Niu, Meng-Fei Mao, Yu-Xue Zhan, Yun Li, Kai-Ping Wang, Mei-Xia Li, Kan Ding","doi":"10.1038/s41401-024-01454-x","DOIUrl":null,"url":null,"abstract":"<p><p>The hepatoprotective effect of the fruit of Lycium barbarum has been documented in China over millennia. Lycium barbarum polysaccharides (LBPs) were the first macromolecules reported to mitigate liver fibrosis in carbon tetrachloride (CCl<sub>4</sub>)-treated mice. Herein, a neutral peptidoglycan, named as LBPW, was extracted from the fruit of Lycium barbarum. In this study, we investigated the hepatoprotective mechanisms of LBPW. CCl<sub>4</sub>-induced liver fibrosis mice were administered LBPW (50, 100, 200 mg ·kg<sup>-1</sup> ·d<sup>-1</sup>, i.p.) or (100, 200, 300 mg· kg<sup>-1</sup> ·d<sup>-1</sup>, i.g.) for 6 weeks. We showed that either i.p. or i.g. administration of LBPW dose-dependently attenuated liver damage and fibrosis in CCl<sub>4</sub>-treated mice. Pharmacokinetic analysis showed that cyanine 5.5 amine (Cy5.5)-labeled LBPW (Cy5.5-LBPW) could be detected in the liver through i.p. and i.g. administration with i.g.-administered Cy5.5-LBPW mainly accumulating in the intestine. In TGF-β1-stimulated LX-2 cells as well as in the liver of CCl<sub>4</sub>-treated mice, we demonstrated that LBPW significantly upregulated Smad7, a negative regulator of TGF-β/Smad signaling, to retard the activation of hepatic stellate cells (HSCs) and prevent liver fibrosis. On the other hand, LBPW significantly boosted the abundance of Akkermansia muciniphila (A. muciniphila) and fortified gut barrier function. We demonstrated that A. muciniphila might be responsible for the efficacy of LBPW since decreasing the abundance of this bacterium by antibiotics (Abs) blocked the effectiveness of LBPW. Overall, our results show that LBPW may exert the hepatoprotective effect via rebalancing TGF-β/Smad7 signaling and propagating gut commensal A. muciniphila, suggesting that LBPW could be leading components to be developed as new drug candidates or nutraceuticals against liver fibrosis.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-024-01454-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The hepatoprotective effect of the fruit of Lycium barbarum has been documented in China over millennia. Lycium barbarum polysaccharides (LBPs) were the first macromolecules reported to mitigate liver fibrosis in carbon tetrachloride (CCl4)-treated mice. Herein, a neutral peptidoglycan, named as LBPW, was extracted from the fruit of Lycium barbarum. In this study, we investigated the hepatoprotective mechanisms of LBPW. CCl4-induced liver fibrosis mice were administered LBPW (50, 100, 200 mg ·kg-1 ·d-1, i.p.) or (100, 200, 300 mg· kg-1 ·d-1, i.g.) for 6 weeks. We showed that either i.p. or i.g. administration of LBPW dose-dependently attenuated liver damage and fibrosis in CCl4-treated mice. Pharmacokinetic analysis showed that cyanine 5.5 amine (Cy5.5)-labeled LBPW (Cy5.5-LBPW) could be detected in the liver through i.p. and i.g. administration with i.g.-administered Cy5.5-LBPW mainly accumulating in the intestine. In TGF-β1-stimulated LX-2 cells as well as in the liver of CCl4-treated mice, we demonstrated that LBPW significantly upregulated Smad7, a negative regulator of TGF-β/Smad signaling, to retard the activation of hepatic stellate cells (HSCs) and prevent liver fibrosis. On the other hand, LBPW significantly boosted the abundance of Akkermansia muciniphila (A. muciniphila) and fortified gut barrier function. We demonstrated that A. muciniphila might be responsible for the efficacy of LBPW since decreasing the abundance of this bacterium by antibiotics (Abs) blocked the effectiveness of LBPW. Overall, our results show that LBPW may exert the hepatoprotective effect via rebalancing TGF-β/Smad7 signaling and propagating gut commensal A. muciniphila, suggesting that LBPW could be leading components to be developed as new drug candidates or nutraceuticals against liver fibrosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
枸杞子肽聚糖通过调节TGF-β/Smad7信号和肠道菌群减轻小鼠肝纤维化。
枸杞的保肝作用在中国已有几千年的记载。枸杞多糖(lbp)是第一个报道的减轻四氯化碳(CCl4)处理小鼠肝纤维化的大分子。本文从枸杞果实中提取中性肽聚糖,命名为LBPW。在本研究中,我们探讨了LBPW的肝保护机制。ccl4诱导肝纤维化小鼠给予LBPW(50、100、200 mg·kg-1·d-1, ig)或(100、200、300 mg·kg-1·d-1, ig) 6周。我们发现,无论是ig还是ig给药,LBPW都能以剂量依赖性减轻ccl4处理小鼠的肝损伤和纤维化。药代动力学分析表明,通过灌胃和ig给药,肝脏中均可检测到Cy5.5-LBPW (Cy5.5-LBPW), ig给药Cy5.5-LBPW主要在肠道内积累。在TGF-β1刺激的LX-2细胞和ccl4处理的小鼠肝脏中,我们证明了LBPW显著上调Smad7 (TGF-β/Smad信号的负调节因子),以延缓肝星状细胞(hsc)的激活并预防肝纤维化。另一方面,LBPW显著提高了嗜muciniphila (A. muciniphila)的丰度,增强了肠道屏障功能。我们证明嗜粘杆菌可能是LBPW有效的原因,因为抗生素(Abs)降低了这种细菌的丰度,阻断了LBPW的有效性。总之,我们的研究结果表明,LBPW可能通过平衡TGF-β/Smad7信号和传播肠道共生嗜粘液芽胞杆菌来发挥肝保护作用,这表明LBPW可能是开发抗肝纤维化新候选药物或营养品的主要成分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Pharmacologica Sinica
Acta Pharmacologica Sinica 医学-化学综合
CiteScore
15.10
自引率
2.40%
发文量
4365
审稿时长
2 months
期刊介绍: APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.
期刊最新文献
CXCR2 modulates chronic pain comorbid depression in mice by regulating adult neurogenesis in the ventral dentate gyrus. Circular RNA hsa_circ_0000288 protects against epilepsy in mice by binding to and stabilizing caprin1 protein. Krüppel-like factor 9 alleviates Alzheimer's disease via IDE-mediated Aβ degradation. Co-inhibition of RAGE and TLR4 sensitizes pancreatic cancer to irreversible electroporation in mice by disrupting autophagy. Author Correction: Bicyclol protects HepG2 cells against D-galactosamine-induced apoptosis through inducing heat shock protein 27 and mitochondria associated pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1