Hybrid Data Augmentation Strategies for Robust Deep Learning Classification of Corneal Topographic MapTopographic Map.

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Biomedical Physics & Engineering Express Pub Date : 2025-01-20 DOI:10.1088/2057-1976/adabea
Abir Chaari, Imen Fourati Kallel, Sonda Kammoun, Mondher Frikha
{"title":"Hybrid Data Augmentation Strategies for Robust Deep Learning Classification of Corneal Topographic MapTopographic Map.","authors":"Abir Chaari, Imen Fourati Kallel, Sonda Kammoun, Mondher Frikha","doi":"10.1088/2057-1976/adabea","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning has emerged as a powerful tool in medical imaging, particularly for corneal topographic map classification. However, the scarcity of labeled data poses a significant challenge to achieving robust performance. This study investigates the impact of various data augmentation strategies on enhancing the performance of a customized convolutional neural network model for corneal topographic map classification. We propose a hybrid data augmentation approach that combines traditional transformations, generative adversarial networks, and specific generative models. Experimental results demonstrate that the hybrid data augmentation method, achieves the highest accuracy of 99.54%, significantly outperforming individual data augmentation techniques. This hybrid approach not only improves model accuracy but also mitigates overfitting issues, making it a promising solution for medical image classification tasks with limited data availability.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/adabea","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning has emerged as a powerful tool in medical imaging, particularly for corneal topographic map classification. However, the scarcity of labeled data poses a significant challenge to achieving robust performance. This study investigates the impact of various data augmentation strategies on enhancing the performance of a customized convolutional neural network model for corneal topographic map classification. We propose a hybrid data augmentation approach that combines traditional transformations, generative adversarial networks, and specific generative models. Experimental results demonstrate that the hybrid data augmentation method, achieves the highest accuracy of 99.54%, significantly outperforming individual data augmentation techniques. This hybrid approach not only improves model accuracy but also mitigates overfitting issues, making it a promising solution for medical image classification tasks with limited data availability.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
角膜地形图鲁棒深度学习分类的混合数据增强策略。
深度学习已经成为医学成像,特别是角膜地形图分类的强大工具。然而,标记数据的稀缺性对实现稳健性能提出了重大挑战。本研究探讨了不同的数据增强策略对增强自定义卷积神经网络角膜地形图分类模型性能的影响。我们提出了一种混合数据增强方法,该方法结合了传统转换、生成对抗网络和特定生成模型。实验结果表明,混合数据增强方法的准确率高达99.54%,显著优于单个数据增强方法。这种混合方法不仅提高了模型精度,而且减轻了过拟合问题,使其成为数据可用性有限的医学图像分类任务的一个有希望的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
期刊最新文献
Biological cell response to electric field: a review of equivalent circuit models and future challenges. A novel hollow-core antiresonant fiber-based biosensor for blood component detection in the THz regime. Simulations of the potential for diffraction enhanced imaging at 8 kev using polycapillary optics. Determining event-related desynchronization onset latency of foot dorsiflexion in people with multiple sclerosis using the cluster depth tests. Automated detection of traumatic bleeding in CT images using 3D U-Net# and multi-organ segmentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1