Quantification of albumin and γ-globulin concentrations by multivariate regression based on admittance relaxation time distribution (mrARTD).

IF 1.6 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Biomedical Physics & Engineering Express Pub Date : 2025-01-31 DOI:10.1088/2057-1976/adabec
Arbariyanto Mahmud Wicaksono, Daisuke Kawashima, Ryoma Ogawa, Shinsuke Akita, Masahiro Takei
{"title":"Quantification of albumin and γ-globulin concentrations by multivariate regression based on admittance relaxation time distribution (<i>mr</i>ARTD).","authors":"Arbariyanto Mahmud Wicaksono, Daisuke Kawashima, Ryoma Ogawa, Shinsuke Akita, Masahiro Takei","doi":"10.1088/2057-1976/adabec","DOIUrl":null,"url":null,"abstract":"<p><p>Albumin and<i>γ</i>-globulin concentrations in subcutaneous adipose tissues (SAT) have been quantified by multivariate regression based on admittance relaxation time distribution (<i>mr</i>ARTD) under the fluctuated background of sodium electrolyte concentration. The<i>mr</i>ARTD formulates<b>P</b>=<b>Ac</b>+<b>Ξ</b>(<b>P</b>: peak matrix of distribution function magnitudeγˆand relaxation timesτˆ,<b>c</b>: concentration matrix of albumin<i>c</i><sub>Alb</sub>,<i>γ</i>-globulin<sub>Glo</sub><i>c</i>, and sodium electrolyte<sup>Na</sup><i>c</i>,<b>A</b>: coefficient matrix of a multivariate regression model, and<b>Ξ</b>: error matrix). The<i>mr</i>ARTD is implemented by two processes which are: (1) the training process of<b>A</b>through the maximum likelihood estimation of<b>P</b>and (2) the quantification process of<i>c</i><sub>Alb</sub>,<sub>Glo</sub><i>c</i>, and<sup>Na</sup><i>c</i>through the model prediction. In the training process, a positive correlation is present between<i>c</i><sub>Alb</sub>,<sub>Glo</sub><i>c</i>, and<sup>Na</sup><i>c</i>toγˆ<sub>1</sub>atτˆ<sub>1</sub>= 0.1 as well asγˆ<sub>2</sub>atτˆ<sub>2</sub>= 1.40 μs as under a fixed concentration of proteins solution into a porcine SAT (<i>c</i><sub>Alb</sub>= 0.800-2.400 g/dL,<sub>Glo</sub><i>c</i>= 0.400-1.200 g dl<sup>-1</sup>and<sup>Na</sup><i>c</i>= 0.700-0.750 g dl<sup>-1</sup>). The<i>mr</i>ARTD method quantifies<i>c</i><sub>Alb</sub>,<sub>Glo</sub><i>c</i>, and<sup>Na</sup><i>c</i>in SAT with an absolute error of 33.79%, 44.60%, and 2.18%, respectively.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/adabec","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Albumin andγ-globulin concentrations in subcutaneous adipose tissues (SAT) have been quantified by multivariate regression based on admittance relaxation time distribution (mrARTD) under the fluctuated background of sodium electrolyte concentration. ThemrARTD formulatesP=Ac+Ξ(P: peak matrix of distribution function magnitudeγˆand relaxation timesτˆ,c: concentration matrix of albumincAlb,γ-globulinGloc, and sodium electrolyteNac,A: coefficient matrix of a multivariate regression model, andΞ: error matrix). ThemrARTD is implemented by two processes which are: (1) the training process ofAthrough the maximum likelihood estimation ofPand (2) the quantification process ofcAlb,Gloc, andNacthrough the model prediction. In the training process, a positive correlation is present betweencAlb,Gloc, andNactoγˆ1atτˆ1= 0.1 as well asγˆ2atτˆ2= 1.40 μs as under a fixed concentration of proteins solution into a porcine SAT (cAlb= 0.800-2.400 g/dL,Gloc= 0.400-1.200 g dl-1andNac= 0.700-0.750 g dl-1). ThemrARTD method quantifiescAlb,Gloc, andNacin SAT with an absolute error of 33.79%, 44.60%, and 2.18%, respectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于导纳弛豫时间分布(mrARTD)的多元回归定量白蛋白和β -球蛋白浓度。
在电解质钠浓度波动的背景下,采用基于导纳弛豫时间分布(mraRTD)的多元回归定量分析了皮下脂肪组织(SAT)中白蛋白和γ-球蛋白的浓度。mraRTD的公式为P = Ac + Ξ (P:分布函数幅度τP和频率τP的峰矩阵,c:白蛋白cAlb、γ-球蛋白Gloc和钠电解质Nac的浓度矩阵,A:多元回归模型的系数矩阵,Ξ:误差矩阵)。mraRTD通过两个过程实现:1)通过P的极大似然估计对A进行训练过程;2)通过模型预测对cAlb、Gloc、Nac进行量化过程。在猪SAT (cAlb = 0.800-2.400 g/dL, Gloc = 0.400-1.200 g/dL, Nac = 0.700-0.750 g/dL)中,在τP1= 0.1和τP2= 1.40µs时,cAlb、Gloc和Nac与α P1呈正相关。mraRTD方法定量SAT中cAlb、Gloc和Nac的绝对误差分别为33.79%、44.60%和2.18%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
期刊最新文献
Research on combining motor imagery and somatosensory attentional orientation to enhance BCI performance. LG-BiTCN: High-Fidelity Denoising for MCG in Strong Noise. Explainable AI for Pain Perception: Subject-Independent EEG Decoding Using DeepSHAP and CNNs. Meta-analysis of mRNA dysregulation associated with Parkinson's disease and other neurological disorders. Morphological and textural descriptors analysis of digital mammograms with radiological findings to support breast cancer detection using artificial neural networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1