Ariana Bujan, Silvia Del Valle Alonso, Nadia S Chiaramoni
{"title":"Photopolymerizable robust lipids towards reliability and their applications.","authors":"Ariana Bujan, Silvia Del Valle Alonso, Nadia S Chiaramoni","doi":"10.1007/s12551-024-01221-6","DOIUrl":null,"url":null,"abstract":"<p><p>Synthetic lipids have been studied as components in membrane models and drug delivery systems. Polymerizable phospholipids, especially photosensitive ones, can form new bilayer bonds when UV light irradiates. These phospholipids have been known since the 1980s, but in the last few years, new applications have been highlighted. Its use in drug delivery systems is interesting since the photopolymerization reaction produces highly stable vesicles. Additionally, the rearrangement of the acyl chains during the photopolymerization process can be applied in the generation of pores, resulting in systems that serve for drug-controlled release. In this article, our goal was to envision earlier photopolymers' publications towards the implications of these versatile phospholipids that led to proposed systems for drug delivery and controlled release of drugs at specific sites. This review offers a broad background towards a simple, reliable, and robust platform to make its application available.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"16 6","pages":"773-782"},"PeriodicalIF":4.9000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735817/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-024-01221-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Synthetic lipids have been studied as components in membrane models and drug delivery systems. Polymerizable phospholipids, especially photosensitive ones, can form new bilayer bonds when UV light irradiates. These phospholipids have been known since the 1980s, but in the last few years, new applications have been highlighted. Its use in drug delivery systems is interesting since the photopolymerization reaction produces highly stable vesicles. Additionally, the rearrangement of the acyl chains during the photopolymerization process can be applied in the generation of pores, resulting in systems that serve for drug-controlled release. In this article, our goal was to envision earlier photopolymers' publications towards the implications of these versatile phospholipids that led to proposed systems for drug delivery and controlled release of drugs at specific sites. This review offers a broad background towards a simple, reliable, and robust platform to make its application available.
期刊介绍:
Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation