scGO: interpretable deep neural network for cell status annotation and disease diagnosis.

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Briefings in bioinformatics Pub Date : 2024-11-22 DOI:10.1093/bib/bbaf018
You Wu, Pengfei Xu, Liyuan Wang, Shuai Liu, Yingnan Hou, Hui Lu, Peng Hu, Xiaofei Li, Xiang Yu
{"title":"scGO: interpretable deep neural network for cell status annotation and disease diagnosis.","authors":"You Wu, Pengfei Xu, Liyuan Wang, Shuai Liu, Yingnan Hou, Hui Lu, Peng Hu, Xiaofei Li, Xiang Yu","doi":"10.1093/bib/bbaf018","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning has emerged as a transformative tool for elucidating cellular heterogeneity in single-cell RNA sequencing. However, a significant challenge lies in the \"black box\" nature of deep learning models, which obscures the decision-making process and limits interpretability in cell status annotation. In this study, we introduced scGO, a Gene Ontology (GO)-inspired deep learning framework designed to provide interpretable cell status annotation for scRNA-seq data. scGO employs sparse neural networks to leverage the intrinsic biological relationships among genes, transcription factors, and GO terms, significantly augmenting interpretability and reducing computational cost. scGO outperforms state-of-the-art methods in the precise characterization of cell subtypes across diverse datasets. Our extensive experimentation across a spectrum of scRNA-seq datasets underscored the remarkable efficacy of scGO in disease diagnosis, prediction of developmental stages, and evaluation of disease severity and cellular senescence status. Furthermore, we incorporated in silico individual gene manipulations into the scGO model, introducing an additional layer for discovering therapeutic targets. Our results provide an interpretable model for accurately annotating cell status, capturing latent biological knowledge, and informing clinical practice.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737892/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf018","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning has emerged as a transformative tool for elucidating cellular heterogeneity in single-cell RNA sequencing. However, a significant challenge lies in the "black box" nature of deep learning models, which obscures the decision-making process and limits interpretability in cell status annotation. In this study, we introduced scGO, a Gene Ontology (GO)-inspired deep learning framework designed to provide interpretable cell status annotation for scRNA-seq data. scGO employs sparse neural networks to leverage the intrinsic biological relationships among genes, transcription factors, and GO terms, significantly augmenting interpretability and reducing computational cost. scGO outperforms state-of-the-art methods in the precise characterization of cell subtypes across diverse datasets. Our extensive experimentation across a spectrum of scRNA-seq datasets underscored the remarkable efficacy of scGO in disease diagnosis, prediction of developmental stages, and evaluation of disease severity and cellular senescence status. Furthermore, we incorporated in silico individual gene manipulations into the scGO model, introducing an additional layer for discovering therapeutic targets. Our results provide an interpretable model for accurately annotating cell status, capturing latent biological knowledge, and informing clinical practice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
scGO:用于细胞状态注释和疾病诊断的可解释深度神经网络。
机器学习已经成为一种变革性的工具,用于阐明单细胞RNA测序中的细胞异质性。然而,一个重大的挑战在于深度学习模型的“黑箱”性质,它模糊了决策过程,限制了细胞状态注释的可解释性。在这项研究中,我们引入了scGO,一个受基因本体(GO)启发的深度学习框架,旨在为scRNA-seq数据提供可解释的细胞状态注释。scGO使用稀疏神经网络来利用基因、转录因子和GO术语之间的内在生物学关系,显著提高了可解释性并降低了计算成本。scGO在不同数据集的细胞亚型精确表征方面优于最先进的方法。我们在一系列scRNA-seq数据集上进行了广泛的实验,强调了scGO在疾病诊断、发育阶段预测、疾病严重程度和细胞衰老状态评估方面的显著功效。此外,我们在scGO模型中加入了硅个体基因操作,引入了一个额外的层来发现治疗靶点。我们的研究结果提供了一个可解释的模型,用于准确地注释细胞状态,捕获潜在的生物学知识,并为临床实践提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
期刊最新文献
TRIAGE: an R package for regulatory gene analysis. AutoXAI4Omics: an automated explainable AI tool for omics and tabular data. MCGAE: unraveling tumor invasion through integrated multimodal spatial transcriptomics. tcrBLOSUM: an amino acid substitution matrix for sensitive alignment of distant epitope-specific TCRs. A versatile pipeline to identify convergently lost ancestral conserved fragments associated with convergent evolution of vocal learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1