Generation of live mice from haploid ESCs with germline-DMR deletions or switch.

IF 13 1区 生物学 Q1 CELL BIOLOGY Cell Discovery Pub Date : 2025-01-21 DOI:10.1038/s41421-024-00757-x
Yongjian Ma, Meng Yan, Zhenfei Xie, Hongling Zhang, Zhoujie Li, Yuanyuan Li, Suming Yang, Meiling Zhang, Wen Li, Jinsong Li
{"title":"Generation of live mice from haploid ESCs with germline-DMR deletions or switch.","authors":"Yongjian Ma, Meng Yan, Zhenfei Xie, Hongling Zhang, Zhoujie Li, Yuanyuan Li, Suming Yang, Meiling Zhang, Wen Li, Jinsong Li","doi":"10.1038/s41421-024-00757-x","DOIUrl":null,"url":null,"abstract":"<p><p>Genomic imprinting is required for sexual reproduction and embryonic development of mammals, in which, differentially methylated regions (DMRs) regulate the parent-specific monoallelic expression of imprinted genes. Numerous studies on imprinted genes have highlighted their critical roles in development. However, what imprinting network is essential for development is still unclear. Here, we establish a stepwise system to reconstruct a development-related imprinting network, in which diploid embryonic stem cells (ESCs) are derived by fusing between parthenogenetic (PG)- and androgenetic (AG)-haploid embryonic stem cells (haESCs) with different DMR deletions (termed Ha-Ha-fusion system), followed by tetraploid complementation to produce all-haESC fetuses. Diploid ESCs fused between PG-haESCs carrying 8 maternally-derived DMR deletions and AG-haESCs with 2 paternally-derived DMR deletions give rise to live pups efficiently, among which, one lives to weaning. Strikingly, diploid ESCs derived from the fusion of PG-haESCs with 7 maternal DMR deletions and AG-haESCs with 2 paternal DMR deletions and maternal Snrpn-DMR deletion also support full-term embryonic development. Moreover, embryos reconstructed by injection of AG-haESCs with hypomethylated H19-DMR into oocytes with H19-DMR deletion develop into live mice sustaining inverted allelic gene expression. Together, our findings indicate that restoration of monoallelic expression of 10 imprinted regions is adequate for the full-term development of all-haESC pups, and it works irrespective of their parental origins. Meanwhile, Ha-Ha-fusion system provides a useful tool for deciphering imprinting regulation networks during embryonic development.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"11 1","pages":"5"},"PeriodicalIF":13.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11747502/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Discovery","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41421-024-00757-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Genomic imprinting is required for sexual reproduction and embryonic development of mammals, in which, differentially methylated regions (DMRs) regulate the parent-specific monoallelic expression of imprinted genes. Numerous studies on imprinted genes have highlighted their critical roles in development. However, what imprinting network is essential for development is still unclear. Here, we establish a stepwise system to reconstruct a development-related imprinting network, in which diploid embryonic stem cells (ESCs) are derived by fusing between parthenogenetic (PG)- and androgenetic (AG)-haploid embryonic stem cells (haESCs) with different DMR deletions (termed Ha-Ha-fusion system), followed by tetraploid complementation to produce all-haESC fetuses. Diploid ESCs fused between PG-haESCs carrying 8 maternally-derived DMR deletions and AG-haESCs with 2 paternally-derived DMR deletions give rise to live pups efficiently, among which, one lives to weaning. Strikingly, diploid ESCs derived from the fusion of PG-haESCs with 7 maternal DMR deletions and AG-haESCs with 2 paternal DMR deletions and maternal Snrpn-DMR deletion also support full-term embryonic development. Moreover, embryos reconstructed by injection of AG-haESCs with hypomethylated H19-DMR into oocytes with H19-DMR deletion develop into live mice sustaining inverted allelic gene expression. Together, our findings indicate that restoration of monoallelic expression of 10 imprinted regions is adequate for the full-term development of all-haESC pups, and it works irrespective of their parental origins. Meanwhile, Ha-Ha-fusion system provides a useful tool for deciphering imprinting regulation networks during embryonic development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生殖系dmr缺失或开关的单倍体ESCs代活小鼠。
基因组印迹是哺乳动物有性生殖和胚胎发育所必需的,其中差异甲基化区(DMRs)调节印迹基因的亲本特异性单等位基因表达。许多关于印迹基因的研究都强调了它们在发育中的关键作用。然而,什么样的印迹网络对发展至关重要,目前还不清楚。在这里,我们建立了一个逐步重建发育相关印迹网络的系统,其中二倍体胚胎干细胞(ESCs)是通过在具有不同DMR缺失的孤雌(PG)和雄激素(AG)单倍体胚胎干细胞(haESCs)之间融合获得的(称为ha -ha -融合系统),然后四倍体互补产生全haesc胎儿。携带8个母源性DMR缺失的PG-haESCs和携带2个父源性DMR缺失的AG-haESCs融合的二倍体ESCs可以有效地产生活仔,其中1只存活至断奶。引人注目的是,由具有7个母本DMR缺失的PG-haESCs和具有2个父本DMR缺失和母本Snrpn-DMR缺失的AG-haESCs融合而成的二倍体ESCs也支持足月胚胎发育。此外,通过将低甲基化H19-DMR的AG-haESCs注入缺失H19-DMR的卵母细胞中重建胚胎,发育成维持反向等位基因表达的活小鼠。总之,我们的研究结果表明,恢复10个印迹区域的单等位基因表达对于全haesc幼崽的足月发育是足够的,并且无论它们的亲本来源如何,它都有效。同时,ha - ha融合系统为破译胚胎发育过程中的印迹调控网络提供了有用的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Discovery
Cell Discovery Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
24.20
自引率
0.60%
发文量
120
审稿时长
20 weeks
期刊介绍: Cell Discovery is a cutting-edge, open access journal published by Springer Nature in collaboration with the Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences (CAS). Our aim is to provide a dynamic and accessible platform for scientists to showcase their exceptional original research. Cell Discovery covers a wide range of topics within the fields of molecular and cell biology. We eagerly publish results of great significance and that are of broad interest to the scientific community. With an international authorship and a focus on basic life sciences, our journal is a valued member of Springer Nature's prestigious Molecular Cell Biology journals. In summary, Cell Discovery offers a fresh approach to scholarly publishing, enabling scientists from around the world to share their exceptional findings in molecular and cell biology.
期刊最新文献
Apaf-1 is an evolutionarily conserved DNA sensor that switches the cell fate between apoptosis and inflammation. Droplet-based high-throughput 3D genome structure mapping of single cells with simultaneous transcriptomics. Generation of live mice from haploid ESCs with germline-DMR deletions or switch. Structure of small HBV surface antigen reveals mechanism of dimer formation. Ion channel traffic jams: the significance of trafficking deficiency in long QT syndrome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1