RF Heating Effects in CEST NMR with Hyperpolarized 129Xe Considering Different Spin Exchange Kinetics and Saturation Schemes.

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL Chemphyschem Pub Date : 2025-01-22 DOI:10.1002/cphc.202401037
David Hernandez-Solarte, Leif Schröder
{"title":"RF Heating Effects in CEST NMR with Hyperpolarized 129Xe Considering Different Spin Exchange Kinetics and Saturation Schemes.","authors":"David Hernandez-Solarte, Leif Schröder","doi":"10.1002/cphc.202401037","DOIUrl":null,"url":null,"abstract":"<p><p>Chemical exchange saturation transfer (CEST) improves the sensitivity of NMR but depending on the spin exchange kinetics, it can require substantial RF energy deposition to label magnetization. Potential side effects like RF-induced heating may occur and must be monitored. Here, we explore the parameter space considering not only undesired heating but efficient CEST build-up (depolarization rate), spectral resolution (line width), and subsequent effects like changes in chemical shifts of CEST responses must be considered, too. We present a systematic study to compare conventional block pulse with shaped-pulse saturation and quantify how the effective average saturation power impacts these parameters. Pulse shape and nominal excitation bandwidth, however, turned out to have little impact on acquired z-spectra and temperature changes. This study illustrates how different exchange kinetics define different regimes of suitable RF power within the dynamic range of fully saturable magnetization from hyperpolarized 129Xe. Temperature-related changes in the resonance frequency of bound spins were also quantified for the two Xe hosts CB6 and CrA-ma and put into context for typically used CEST acquisition parameters, including the stability of the magnetic field.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202401037"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202401037","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Chemical exchange saturation transfer (CEST) improves the sensitivity of NMR but depending on the spin exchange kinetics, it can require substantial RF energy deposition to label magnetization. Potential side effects like RF-induced heating may occur and must be monitored. Here, we explore the parameter space considering not only undesired heating but efficient CEST build-up (depolarization rate), spectral resolution (line width), and subsequent effects like changes in chemical shifts of CEST responses must be considered, too. We present a systematic study to compare conventional block pulse with shaped-pulse saturation and quantify how the effective average saturation power impacts these parameters. Pulse shape and nominal excitation bandwidth, however, turned out to have little impact on acquired z-spectra and temperature changes. This study illustrates how different exchange kinetics define different regimes of suitable RF power within the dynamic range of fully saturable magnetization from hyperpolarized 129Xe. Temperature-related changes in the resonance frequency of bound spins were also quantified for the two Xe hosts CB6 and CrA-ma and put into context for typically used CEST acquisition parameters, including the stability of the magnetic field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
期刊最新文献
Dynamics of Pyrene Excimer in a Cholesteryl-based Supramolecular Host Matrix. RF Heating Effects in CEST NMR with Hyperpolarized 129Xe Considering Different Spin Exchange Kinetics and Saturation Schemes. Dissociation of hydrogen and formation of water at the (010) and (111) surfaces of orthorhombic FeNbO4. Perturbing Pentalene: Aromaticity and Antiaromaticity in a Non-alternant Polycyclic Aromatic Hydrocarbon and BN-heteroanalogues. Ground and excited state aromaticity in azulene-based helicenes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1