Svea Seehafer, Lars-Patrick Schmill, Sönke Peters, Olav Jansen, Schekeb Aludin
{"title":"Volumetry of Selected Brain Regions-Can We Compare MRI Examinations of Different Manufacturers and Field Strengths?","authors":"Svea Seehafer, Lars-Patrick Schmill, Sönke Peters, Olav Jansen, Schekeb Aludin","doi":"10.1007/s00062-024-01489-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Magnetic Resonance Imaging based brain segmentation and volumetry has become an important tool in clinical routine and research. However the impact of the used hardware is only barely investigated. This study aims to assess the influence of scanner manufacturer, field strength and head-coil on volumetry results.</p><p><strong>Methods: </strong>10 healthy subjects (27.4 ± 1.71 years) were prospectively examined in a Philips Achieva 1.5T, Philips Ingenia CX 3T, Siemens MAGNETOM Aera 1.5T and Siemens MAGNETOM Vida 3T, the latter equipped with three different head coils, within one day. Brain volumetry of the whole brain, total white and grey matter, the cortical grey matter of the supratentorial lobes as well as regions important for the differentiation of neurodegenerative diseases of the dementia and movement disorder spectrum and the ventricular system was performed using the CE-certified software mdbrain by mediaire (Berlin, Germany). Both raw volumetry results and percentile allocation provided by the software were analysed.</p><p><strong>Results: </strong>This study reveals significantly different volumetry results for all examined brain regions beside the ventricular system between the different MRI devices but comparable results between the different head coils. When examining the percentile allocation provided by used software, the Intraclass-Correlation-Coefficient (ICC) values were even lower than the raw volume ICC values ranging from poor to excellent correlation.</p><p><strong>Conclusion: </strong>The present study reveals highly relevant results that need to be considered both in clinical routine when analysing follow-up examinations from different scanner types and clinical research, especially when planning longitudinal and/or multicentre studies.</p>","PeriodicalId":10391,"journal":{"name":"Clinical Neuroradiology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Neuroradiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00062-024-01489-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Magnetic Resonance Imaging based brain segmentation and volumetry has become an important tool in clinical routine and research. However the impact of the used hardware is only barely investigated. This study aims to assess the influence of scanner manufacturer, field strength and head-coil on volumetry results.
Methods: 10 healthy subjects (27.4 ± 1.71 years) were prospectively examined in a Philips Achieva 1.5T, Philips Ingenia CX 3T, Siemens MAGNETOM Aera 1.5T and Siemens MAGNETOM Vida 3T, the latter equipped with three different head coils, within one day. Brain volumetry of the whole brain, total white and grey matter, the cortical grey matter of the supratentorial lobes as well as regions important for the differentiation of neurodegenerative diseases of the dementia and movement disorder spectrum and the ventricular system was performed using the CE-certified software mdbrain by mediaire (Berlin, Germany). Both raw volumetry results and percentile allocation provided by the software were analysed.
Results: This study reveals significantly different volumetry results for all examined brain regions beside the ventricular system between the different MRI devices but comparable results between the different head coils. When examining the percentile allocation provided by used software, the Intraclass-Correlation-Coefficient (ICC) values were even lower than the raw volume ICC values ranging from poor to excellent correlation.
Conclusion: The present study reveals highly relevant results that need to be considered both in clinical routine when analysing follow-up examinations from different scanner types and clinical research, especially when planning longitudinal and/or multicentre studies.
期刊介绍:
Clinical Neuroradiology provides current information, original contributions, and reviews in the field of neuroradiology. An interdisciplinary approach is accomplished by diagnostic and therapeutic contributions related to associated subjects.
The international coverage and relevance of the journal is underlined by its being the official journal of the German, Swiss, and Austrian Societies of Neuroradiology.