Keir Forgie, Sayed Himmat, Katie Du, Alynne Ribano, Abeline Watkins, Nicholas M. Fialka, Sanaz Hatami, Mubashir Khan, Xiuhua Wang, Ryan Edgar, Katie-Marie Buswell-Zuk, Darren H. Freed, Jayan Nagendran
{"title":"Negative Pressure Ventilation Ex-Situ Lung Perfusion Preserves Porcine and Human Lungs for 36-Hours","authors":"Keir Forgie, Sayed Himmat, Katie Du, Alynne Ribano, Abeline Watkins, Nicholas M. Fialka, Sanaz Hatami, Mubashir Khan, Xiuhua Wang, Ryan Edgar, Katie-Marie Buswell-Zuk, Darren H. Freed, Jayan Nagendran","doi":"10.1111/ctr.70083","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Introduction</h3>\n \n <p>Preclinically, 24-hour continuous Ex-Situ Lung Perfusion (ESLP) is the longest duration achieved in large animal models and rejected human lungs. Here, we present our 36-hour Negative Pressure Ventilation (NPV)-ESLP protocol applied to porcine and rejected human lungs.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Five sets of donor domestic pig lungs (45-55 kg) underwent 36-hour NPV-ESLP. Two sets of clinically rejected human lungs were preserved on 36-hour NPV-ESLP. Graft function was assessed via physiologic parameters, edema formation, and cytokine profiles.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Porcine and human lung function was stable with mean partial pressure of oxygen divided by the fraction of inspired oxygen (PaO2/FiO2; PF) ratios throughout preservation of 473±11.79 and 554.7±13.26, respectively (mean±standard error of the mean). In porcine lungs, mean compliance (Cdyn) during ESLP was 33.96±2.18, pulmonary artery pressure (PAP) 13.03±0.53, and pulmonary vascular resistance (PVR) 481.20 ±21.86. In human lungs, mean Cdyn was 82.68±3.54, PAP 6.00±0.33, and PVR 184.00±9.71. Average percentage weight-gain was 34.47±13.22 in porcine lungs and 116.3±6.65 in rejected human lungs.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>NPV-ESLP can preserve porcine lungs and human lungs for 36-hours with acceptable physiologic function. Greater weight-gain in the human lungs is likely due to prolonged ischemic time prior to ESLP and use of an acellular perfusate. Continuous 36-hour NPV-ESLP could support therapies for endothelial protection and mitigate fluid accumulation.</p>\n </section>\n </div>","PeriodicalId":10467,"journal":{"name":"Clinical Transplantation","volume":"39 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Transplantation","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ctr.70083","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Preclinically, 24-hour continuous Ex-Situ Lung Perfusion (ESLP) is the longest duration achieved in large animal models and rejected human lungs. Here, we present our 36-hour Negative Pressure Ventilation (NPV)-ESLP protocol applied to porcine and rejected human lungs.
Methods
Five sets of donor domestic pig lungs (45-55 kg) underwent 36-hour NPV-ESLP. Two sets of clinically rejected human lungs were preserved on 36-hour NPV-ESLP. Graft function was assessed via physiologic parameters, edema formation, and cytokine profiles.
Results
Porcine and human lung function was stable with mean partial pressure of oxygen divided by the fraction of inspired oxygen (PaO2/FiO2; PF) ratios throughout preservation of 473±11.79 and 554.7±13.26, respectively (mean±standard error of the mean). In porcine lungs, mean compliance (Cdyn) during ESLP was 33.96±2.18, pulmonary artery pressure (PAP) 13.03±0.53, and pulmonary vascular resistance (PVR) 481.20 ±21.86. In human lungs, mean Cdyn was 82.68±3.54, PAP 6.00±0.33, and PVR 184.00±9.71. Average percentage weight-gain was 34.47±13.22 in porcine lungs and 116.3±6.65 in rejected human lungs.
Conclusion
NPV-ESLP can preserve porcine lungs and human lungs for 36-hours with acceptable physiologic function. Greater weight-gain in the human lungs is likely due to prolonged ischemic time prior to ESLP and use of an acellular perfusate. Continuous 36-hour NPV-ESLP could support therapies for endothelial protection and mitigate fluid accumulation.
期刊介绍:
Clinical Transplantation: The Journal of Clinical and Translational Research aims to serve as a channel of rapid communication for all those involved in the care of patients who require, or have had, organ or tissue transplants, including: kidney, intestine, liver, pancreas, islets, heart, heart valves, lung, bone marrow, cornea, skin, bone, and cartilage, viable or stored.
Published monthly, Clinical Transplantation’s scope is focused on the complete spectrum of present transplant therapies, as well as also those that are experimental or may become possible in future. Topics include:
Immunology and immunosuppression;
Patient preparation;
Social, ethical, and psychological issues;
Complications, short- and long-term results;
Artificial organs;
Donation and preservation of organ and tissue;
Translational studies;
Advances in tissue typing;
Updates on transplant pathology;.
Clinical and translational studies are particularly welcome, as well as focused reviews. Full-length papers and short communications are invited. Clinical reviews are encouraged, as well as seminal papers in basic science which might lead to immediate clinical application. Prominence is regularly given to the results of cooperative surveys conducted by the organ and tissue transplant registries.
Clinical Transplantation: The Journal of Clinical and Translational Research is essential reading for clinicians and researchers in the diverse field of transplantation: surgeons; clinical immunologists; cryobiologists; hematologists; gastroenterologists; hepatologists; pulmonologists; nephrologists; cardiologists; and endocrinologists. It will also be of interest to sociologists, psychologists, research workers, and to all health professionals whose combined efforts will improve the prognosis of transplant recipients.