Spatial datasets of CMIP6 climate change projections for Canada and the United States

IF 1 Q3 MULTIDISCIPLINARY SCIENCES Data in Brief Pub Date : 2025-02-01 DOI:10.1016/j.dib.2024.111246
Daniel W. McKenney , John H. Pedlar , Kevin Lawrence , Stephen R. Sobie , Kaitlin DeBoer , Tiziana Brescacin
{"title":"Spatial datasets of CMIP6 climate change projections for Canada and the United States","authors":"Daniel W. McKenney ,&nbsp;John H. Pedlar ,&nbsp;Kevin Lawrence ,&nbsp;Stephen R. Sobie ,&nbsp;Kaitlin DeBoer ,&nbsp;Tiziana Brescacin","doi":"10.1016/j.dib.2024.111246","DOIUrl":null,"url":null,"abstract":"<div><div>Geospatial climate change projections are critical for assessing climate change impacts and adaptations across a wide range of disciplines. Here we present monthly-based grids of climate change projections at a 2-km resolution covering Canada and the United States. These data products are based on outputs from the 6th Coupled Model Intercomparison Project (CMIP6) and include projections for 13 General Circulation Models (GCMs), three Shared Socio-economic Pathways (SSP1 2.6, SSP2 4.5, and SSP5 8.5), four 30-year time periods (2011–2040, 2021–2050, 2041–2070, and 2071–2100), and a suite of climate variables, including monthly maximum and minimum temperature, precipitation, climate moisture index, and various bioclimatic summaries. The products employ a delta downscaling method, which combines historical normal values at climate stations with broad-scale change projections (or deltas) from GCMs, followed by spatial interpolation using ANUSPLIN. Various quality control efforts, described herein, were undertaken to ensure that the final products provided reasonable estimates of future climate.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"58 ","pages":"Article 111246"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742571/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340924012083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Geospatial climate change projections are critical for assessing climate change impacts and adaptations across a wide range of disciplines. Here we present monthly-based grids of climate change projections at a 2-km resolution covering Canada and the United States. These data products are based on outputs from the 6th Coupled Model Intercomparison Project (CMIP6) and include projections for 13 General Circulation Models (GCMs), three Shared Socio-economic Pathways (SSP1 2.6, SSP2 4.5, and SSP5 8.5), four 30-year time periods (2011–2040, 2021–2050, 2041–2070, and 2071–2100), and a suite of climate variables, including monthly maximum and minimum temperature, precipitation, climate moisture index, and various bioclimatic summaries. The products employ a delta downscaling method, which combines historical normal values at climate stations with broad-scale change projections (or deltas) from GCMs, followed by spatial interpolation using ANUSPLIN. Various quality control efforts, described herein, were undertaken to ensure that the final products provided reasonable estimates of future climate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加拿大和美国CMIP6气候变化预估空间数据集。
地理空间气候变化预估对于评估气候变化影响和适应各种学科至关重要。在这里,我们以每月2公里的分辨率提供了覆盖加拿大和美国的气候变化预测网格。这些数据产品基于第6个耦合模式比对项目(CMIP6)的输出,包括13个一般环流模式(GCMs)、3个共享社会经济路径(SSP1 2.6、SSP2 4.5和SSP5 8.5)、4个30年周期(2011-2040、2021-2050、2041-2070和2071-2100)的预估,以及一系列气候变量,包括月最高和最低温度、降水、气候湿度指数和各种生物气候摘要。这些产品采用delta降尺度方法,将气候站的历史正常值与来自gcm的大尺度变化预估(或delta)相结合,然后使用ANUSPLIN进行空间插值。本文所述的各种质量控制工作是为了确保最终产品提供对未来气候的合理估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
The use of number words in natural language obeys Weber's law.
IF 4.1 1区 心理学Journal of Experimental Psychology: GeneralPub Date : 2019-12-02 DOI: 10.1037/xge0000715
Luca Rinaldi, M. Marelli
来源期刊
Data in Brief
Data in Brief MULTIDISCIPLINARY SCIENCES-
CiteScore
3.10
自引率
0.00%
发文量
996
审稿时长
70 days
期刊介绍: Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.
期刊最新文献
Acquisition Of Balinese Imagined Spelling using Electroencephalogram (BISE) Dataset Multivariate analysis for identifying drought-tolerant barley (Hordeum vulgare L.) genotypes using stress indices Public database mapping UK seafood supplies and nutrients Dataset on the use of biostimulants in strawberry cultivation under tropical conditions Kidney stone detection via axial CT imaging: A dataset for AI and deep learning applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1