{"title":"Formulation, Characterization and in vitro Release of Topical Nanoemulsion Containing Prednisolone-Derived Corticosteroid.","authors":"Sakine Tuncay Tanriverdi, Evren Homan Gokce, Nahide Zeren Arda Ozturk, Merve Turk, Bita Entezari, Alper Balci, Unnugulsum Erdogan, Emre Ozcanlar, Enis Isik, Banu Ozkırım Arslan, Emre Erol Aldeniz, Udaya Kumar Dude, Ozgen Ozer","doi":"10.1080/03639045.2025.2455437","DOIUrl":null,"url":null,"abstract":"<p><strong>Backround: </strong>Prednisolone-Derived Corticosteroid (PDC), has anti-inflammatory activity in ocular administration. However, drug administration to the eye is extremely difficult due to the complex structure of the eye. Because of the ability of the eye to retain the drug and its physiology, the bioavailability of drugs applied to the eye is very low.</p><p><strong>Objective: </strong>One of the methods to overcome bioavailability problem is to formulate the drug as a nanoemulsion (NE). NEs are thermodynamically stable, colloidal drug delivery systems. They have small globule size and high surface area. These properties give them the ability to cross the biological membrane and increase the therapeutic efficacy of the drug molecule.</p><p><strong>Methodology: </strong>The high energy method was used to create a NE eye drop formulation containing PDC, and the effects of changing homogenization processes on NE formation were investigated. After deciding on the optimum formulation; characterization, assay and in vitro release studies were performed, and the stability of the formulation was followed for 12 months.</p><p><strong>Results: </strong>The optimum formulation selected initially had 126.6 ± 40.12nm and 99.9 ± 1.2% PDC, it had 125.4 ± 41.20nm and 99.29 ± 1.3% PDC after 12months in 25 °C 40%RH conditions. Cytotoxicity studies have shown no significant cytotoxic effects in NE containing PDC.</p><p><strong>Conclusion: </strong>The preparation and optimization of topical nanoemulsion formulations containing PDC for ocular inflammation treatment were achieved. The developed formulation was stable for 12months and no toxic effect was found in cell culture studies. This formulation could be useful as an alternative to PDC for ocular applications.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"1-19"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development and Industrial Pharmacy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03639045.2025.2455437","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Backround: Prednisolone-Derived Corticosteroid (PDC), has anti-inflammatory activity in ocular administration. However, drug administration to the eye is extremely difficult due to the complex structure of the eye. Because of the ability of the eye to retain the drug and its physiology, the bioavailability of drugs applied to the eye is very low.
Objective: One of the methods to overcome bioavailability problem is to formulate the drug as a nanoemulsion (NE). NEs are thermodynamically stable, colloidal drug delivery systems. They have small globule size and high surface area. These properties give them the ability to cross the biological membrane and increase the therapeutic efficacy of the drug molecule.
Methodology: The high energy method was used to create a NE eye drop formulation containing PDC, and the effects of changing homogenization processes on NE formation were investigated. After deciding on the optimum formulation; characterization, assay and in vitro release studies were performed, and the stability of the formulation was followed for 12 months.
Results: The optimum formulation selected initially had 126.6 ± 40.12nm and 99.9 ± 1.2% PDC, it had 125.4 ± 41.20nm and 99.29 ± 1.3% PDC after 12months in 25 °C 40%RH conditions. Cytotoxicity studies have shown no significant cytotoxic effects in NE containing PDC.
Conclusion: The preparation and optimization of topical nanoemulsion formulations containing PDC for ocular inflammation treatment were achieved. The developed formulation was stable for 12months and no toxic effect was found in cell culture studies. This formulation could be useful as an alternative to PDC for ocular applications.
期刊介绍:
The aim of Drug Development and Industrial Pharmacy is to publish novel, original, peer-reviewed research manuscripts within relevant topics and research methods related to pharmaceutical research and development, and industrial pharmacy. Research papers must be hypothesis driven and emphasize innovative breakthrough topics in pharmaceutics and drug delivery. The journal will also consider timely critical review papers.