Recent advances in ruthenium (III) complex-loaded nanomaterial for enhanced cancer therapy efficacy.

IF 2.4 4区 医学 Q3 CHEMISTRY, MEDICINAL Drug Development and Industrial Pharmacy Pub Date : 2025-01-23 DOI:10.1080/03639045.2025.2455428
Xuemei Zhong, Ye Zhang, Jianhua Wei
{"title":"Recent advances in ruthenium (III) complex-loaded nanomaterial for enhanced cancer therapy efficacy.","authors":"Xuemei Zhong, Ye Zhang, Jianhua Wei","doi":"10.1080/03639045.2025.2455428","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Amid the escalating global cancer incidence, the development of effective and safe anticancer drugs is a critical priority in medical research. Addressing the clinical shortcomings of ruthenium-based anticancer drugs are currently a prominent focus of research.</p><p><strong>Significance and methods: </strong>Since the pioneering work with platinum derivatives, significant progress has been made in the fundamental studies of metal complexes for the treatment of a wide range of cancers, and there has been a growing interest in their properties and biomedical applications. Although chemotherapy is crucial in clinical tumor management, platinum(II) anticancer drugs like cisplatin and carboplatin suffer from severe toxicity and drug resistance issues. Among various metal-based drugs, ruthenium(III) complexes are notable for their selectivity, cytotoxic activity <i>in vitro</i>, and effective anticancer properties <i>in vivo</i>. Despite some drug candidates reaching late-stage clinical trials, their clinical application remains constrained by problems such as low solubility, poor stability, and inadequate cellular uptake.</p><p><strong>Results: </strong>The development of efficient and stable nanocarrier-based drug delivery systems for ruthenium(III) complexes, enhancing pharmacokinetic properties, and enabling slow, controlled release and targeted drug delivery, offers potential solutions to these limitations.</p><p><strong>Conclusions: </strong>This review delves into the recent strides in nanomaterial-based drug delivery for ruthenium complexes, encompassing research on platinum (II) and ruthenium (III) metal complexes, nano-delivery system designs, and addresses pivotal challenges and future trajectories in this domain.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"1-11"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development and Industrial Pharmacy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03639045.2025.2455428","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Amid the escalating global cancer incidence, the development of effective and safe anticancer drugs is a critical priority in medical research. Addressing the clinical shortcomings of ruthenium-based anticancer drugs are currently a prominent focus of research.

Significance and methods: Since the pioneering work with platinum derivatives, significant progress has been made in the fundamental studies of metal complexes for the treatment of a wide range of cancers, and there has been a growing interest in their properties and biomedical applications. Although chemotherapy is crucial in clinical tumor management, platinum(II) anticancer drugs like cisplatin and carboplatin suffer from severe toxicity and drug resistance issues. Among various metal-based drugs, ruthenium(III) complexes are notable for their selectivity, cytotoxic activity in vitro, and effective anticancer properties in vivo. Despite some drug candidates reaching late-stage clinical trials, their clinical application remains constrained by problems such as low solubility, poor stability, and inadequate cellular uptake.

Results: The development of efficient and stable nanocarrier-based drug delivery systems for ruthenium(III) complexes, enhancing pharmacokinetic properties, and enabling slow, controlled release and targeted drug delivery, offers potential solutions to these limitations.

Conclusions: This review delves into the recent strides in nanomaterial-based drug delivery for ruthenium complexes, encompassing research on platinum (II) and ruthenium (III) metal complexes, nano-delivery system designs, and addresses pivotal challenges and future trajectories in this domain.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钌(III)复合负载纳米材料增强癌症治疗效果的研究进展。
目的:在全球癌症发病率不断上升的背景下,开发有效、安全的抗癌药物是医学研究的重中之重。解决基于钌的抗癌药物的临床缺陷是目前研究的一个突出焦点。意义和方法:自铂衍生物的开创性工作以来,金属配合物治疗多种癌症的基础研究取得了重大进展,人们对其性质和生物医学应用的兴趣日益浓厚。虽然化疗在临床肿瘤治疗中至关重要,但铂(II)类抗癌药物如顺铂和卡铂存在严重的毒性和耐药问题。在各种金属基药物中,钌(III)配合物以其选择性、体外细胞毒活性和体内有效的抗癌特性而闻名。尽管一些候选药物进入后期临床试验,但它们的临床应用仍然受到诸如溶解度低、稳定性差和细胞摄取不足等问题的限制。结果:开发高效、稳定的钌(III)配合物纳米载体给药系统,增强其药动学特性,实现缓释、控释和靶向给药,为这些局限性提供了潜在的解决方案。结论:本综述深入研究了基于纳米材料的钌配合物药物递送的最新进展,包括铂(II)和钌(III)金属配合物的研究,纳米递送系统设计,并提出了该领域的关键挑战和未来发展轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
82
审稿时长
4.5 months
期刊介绍: The aim of Drug Development and Industrial Pharmacy is to publish novel, original, peer-reviewed research manuscripts within relevant topics and research methods related to pharmaceutical research and development, and industrial pharmacy. Research papers must be hypothesis driven and emphasize innovative breakthrough topics in pharmaceutics and drug delivery. The journal will also consider timely critical review papers.
期刊最新文献
Recent advances in ruthenium (III) complex-loaded nanomaterial for enhanced cancer therapy efficacy. Formulation, Characterization and in vitro Release of Topical Nanoemulsion Containing Prednisolone-Derived Corticosteroid. Tumor microenvironment as a target for developing anticancer hydrogels. Comparison Between Molecular Dynamics Potentials for Simulation of Graphene-Based Nanomaterials for Biomedical Applications. Optimizing voriconazole-loaded thermoresponsive hydrogel: in silico tools and ex vivo studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1