{"title":"NO-mediated DNA damage induced by polystyrene nanoparticles triggers program cell death in mesenchymal stem cells.","authors":"Vesna Matovic, Biljana Ljujic, Marina Miletic Kovacevic, Olivera Milosevic-Djordjevic, Nevena Milivojevic, Sandra Nikolic, Marina Gazdic Jankovic","doi":"10.1080/01480545.2025.2453580","DOIUrl":null,"url":null,"abstract":"<p><p>Daily contact with considerable amounts of polystyrene nanoparticles (PSNPs) may cause harmful effects on the living organisms, through mechanisms that are not fully understood. The study aimed to evaluate the cytotoxic and genotoxic effects of PSNPs (size 200 nm and 40 nm) in mesenchymal stem cells (MSCs). In order to estimate cellular uptake and retention of nanoplastics, PSNP-treated cells have been analyzed by transmission electron microscopy. For assessing morphology and viability of MSCs after PSNP treatment at two environmentally relevant doses (0.47 and 4.7 μl/ml) for 24 hours, HE and Giemsa staining were performed. Annexin V‑FITC/PI assay was used to quantify PSNPs-mediated cell death. Genotoxicity of PSNPs was evaluated by Comet test. The capacity of PSNPs to trigger the production of free radicals in MSCs was also evaluated. TEM confirmed endocytosis of PSNPs. Decreased cell volume, nuclear hyperchromatism, edge aggregation, and formation of densely stained apoptotic bodies, indicated that PSNP-treated MSCs undergo apoptosis. The presented data showed that both concentration of PS particles significantly increased early apoptotic cell death in comparison to untreated cells. Moreover, both doses of PSNPs significantly increased the genetic damage index in MSCs in dose-dependent manner. In conclusion, PSNPs penetrate, accumulate and induce cytotoxic and genotoxic damage in MSCs.</p>","PeriodicalId":11333,"journal":{"name":"Drug and Chemical Toxicology","volume":" ","pages":"1-9"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug and Chemical Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01480545.2025.2453580","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Daily contact with considerable amounts of polystyrene nanoparticles (PSNPs) may cause harmful effects on the living organisms, through mechanisms that are not fully understood. The study aimed to evaluate the cytotoxic and genotoxic effects of PSNPs (size 200 nm and 40 nm) in mesenchymal stem cells (MSCs). In order to estimate cellular uptake and retention of nanoplastics, PSNP-treated cells have been analyzed by transmission electron microscopy. For assessing morphology and viability of MSCs after PSNP treatment at two environmentally relevant doses (0.47 and 4.7 μl/ml) for 24 hours, HE and Giemsa staining were performed. Annexin V‑FITC/PI assay was used to quantify PSNPs-mediated cell death. Genotoxicity of PSNPs was evaluated by Comet test. The capacity of PSNPs to trigger the production of free radicals in MSCs was also evaluated. TEM confirmed endocytosis of PSNPs. Decreased cell volume, nuclear hyperchromatism, edge aggregation, and formation of densely stained apoptotic bodies, indicated that PSNP-treated MSCs undergo apoptosis. The presented data showed that both concentration of PS particles significantly increased early apoptotic cell death in comparison to untreated cells. Moreover, both doses of PSNPs significantly increased the genetic damage index in MSCs in dose-dependent manner. In conclusion, PSNPs penetrate, accumulate and induce cytotoxic and genotoxic damage in MSCs.
期刊介绍:
Drug and Chemical Toxicology publishes full-length research papers, review articles and short communications that encompass a broad spectrum of toxicological data surrounding risk assessment and harmful exposure. Manuscripts are considered according to their relevance to the journal.
Topics include both descriptive and mechanics research that illustrates the risk assessment implications of exposure to toxic agents. Examples of suitable topics include toxicological studies, which are structural examinations on the effects of dose, metabolism, and statistical or mechanism-based approaches to risk assessment. New findings and methods, along with safety evaluations, are also acceptable. Special issues may be reserved to publish symposium summaries, reviews in toxicology, and overviews of the practical interpretation and application of toxicological data.