Renée Poelman, Marie V Le May, Erik Schéle, Iris Stoltenborg, Suzanne L Dickson
{"title":"Intranasal delivery of a ghrelin mimetic engages the brain ghrelin signalling system in mice.","authors":"Renée Poelman, Marie V Le May, Erik Schéle, Iris Stoltenborg, Suzanne L Dickson","doi":"10.1210/endocr/bqae166","DOIUrl":null,"url":null,"abstract":"<p><p>Ghrelin, the endogenous ligand of the growth hormone secretagogue receptor (GHSR), promotes food intake, other feeding behaviours and stimulates growth hormone (GH) release from the pituitary. Growth hormone secretagogues (GHS), such as GHRP-6 and MK-0677, are synthetic GHSR ligands that activate orexigenic Neuropeptide Y neurons that co-express Agouti-Related Peptide (AgRP) in the arcuate nucleus of the hypothalamus when administered systemically. Systemic GHRP-6 also stimulates GH release in humans and rats. Thus, GHS and ghrelin have therapeutic relevance in patients who could benefit from its orexigenic and/or GH-releasing effects. This study examined whether intranasal delivery of ghrelin, GHRP-6, or MK-0677 engages the brain ghrelin signalling system. Effective compounds and doses were selected based on increased food intake after intranasal application in mice. Only GHRP-6 (5 mg/kg) increased food intake without adverse effects, prompting detailed analysis of meal patterns, neuronal activation in the arcuate nucleus (via Fos mapping) and neurochemical identification of c-fos mRNA-expressing neurons using RNAscope. We also assessed the impact of intranasal GHRP-6 on serum GH levels. Intranasal GHRP-6 increased food intake by increasing meal frequency and size. Fos expression in the arcuate nucleus was higher in GHRP-6-treated mice than saline controls. When examining the neurochemical identity of c-fos-mRNA-expressing neurons, we found co-expression with 63.5±1.9% Ghsr-mRNA, 79±6.8% Agrp-mRNA and 11.4±2.5% Ghrh-mRNA, demonstrating GHRP-6's ability to engage arcuate nucleus neurons involved in food intake and GH release. Additionally, intranasal GHRP-6 elevated GH serum levels. These findings suggest that intranasal GHRP-6, but not ghrelin or MK-0677, can engage the brain ghrelin signalling system.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/endocr/bqae166","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Ghrelin, the endogenous ligand of the growth hormone secretagogue receptor (GHSR), promotes food intake, other feeding behaviours and stimulates growth hormone (GH) release from the pituitary. Growth hormone secretagogues (GHS), such as GHRP-6 and MK-0677, are synthetic GHSR ligands that activate orexigenic Neuropeptide Y neurons that co-express Agouti-Related Peptide (AgRP) in the arcuate nucleus of the hypothalamus when administered systemically. Systemic GHRP-6 also stimulates GH release in humans and rats. Thus, GHS and ghrelin have therapeutic relevance in patients who could benefit from its orexigenic and/or GH-releasing effects. This study examined whether intranasal delivery of ghrelin, GHRP-6, or MK-0677 engages the brain ghrelin signalling system. Effective compounds and doses were selected based on increased food intake after intranasal application in mice. Only GHRP-6 (5 mg/kg) increased food intake without adverse effects, prompting detailed analysis of meal patterns, neuronal activation in the arcuate nucleus (via Fos mapping) and neurochemical identification of c-fos mRNA-expressing neurons using RNAscope. We also assessed the impact of intranasal GHRP-6 on serum GH levels. Intranasal GHRP-6 increased food intake by increasing meal frequency and size. Fos expression in the arcuate nucleus was higher in GHRP-6-treated mice than saline controls. When examining the neurochemical identity of c-fos-mRNA-expressing neurons, we found co-expression with 63.5±1.9% Ghsr-mRNA, 79±6.8% Agrp-mRNA and 11.4±2.5% Ghrh-mRNA, demonstrating GHRP-6's ability to engage arcuate nucleus neurons involved in food intake and GH release. Additionally, intranasal GHRP-6 elevated GH serum levels. These findings suggest that intranasal GHRP-6, but not ghrelin or MK-0677, can engage the brain ghrelin signalling system.
期刊介绍:
The mission of Endocrinology is to be the authoritative source of emerging hormone science and to disseminate that new knowledge to scientists, clinicians, and the public in a way that will enable "hormone science to health." Endocrinology welcomes the submission of original research investigating endocrine systems and diseases at all levels of biological organization, incorporating molecular mechanistic studies, such as hormone-receptor interactions, in all areas of endocrinology, as well as cross-disciplinary and integrative studies. The editors of Endocrinology encourage the submission of research in emerging areas not traditionally recognized as endocrinology or metabolism in addition to the following traditionally recognized fields: Adrenal; Bone Health and Osteoporosis; Cardiovascular Endocrinology; Diabetes; Endocrine-Disrupting Chemicals; Endocrine Neoplasia and Cancer; Growth; Neuroendocrinology; Nuclear Receptors and Their Ligands; Obesity; Reproductive Endocrinology; Signaling Pathways; and Thyroid.