Effect-based analysis of endocrine effects in surface and ground water with focus on progestagenicity using Arxula yeast-based reporter gene assays.

IF 3.6 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Environmental Toxicology and Chemistry Pub Date : 2025-01-06 DOI:10.1093/etojnl/vgae045
Michelle Klein, Melissa Reibold, Petra Reinders, Fabian Itzel, Martin Jaehne, Linda Gehrmann, Martin Daniel Klaßen, Torsten Claus Schmidt, Jochen Türk
{"title":"Effect-based analysis of endocrine effects in surface and ground water with focus on progestagenicity using Arxula yeast-based reporter gene assays.","authors":"Michelle Klein, Melissa Reibold, Petra Reinders, Fabian Itzel, Martin Jaehne, Linda Gehrmann, Martin Daniel Klaßen, Torsten Claus Schmidt, Jochen Türk","doi":"10.1093/etojnl/vgae045","DOIUrl":null,"url":null,"abstract":"<p><p>The use of effect-based methods in water monitoring for identifying risks to aquatic organisms and human health is important for aiding regulatory decisions. In the past decades, the database on monitoring, especially in surface waters, has grown as this aquatic environment is openly exposed to various contamination sources. With regard to endocrine disruption, estrogenic and androgenic effects have been primarily investigated. Here, yeast-based bioassays emerged as potent tools, offering sensitivity to environmentally relevant concentrations and high robustness. The objectives of this study were to investigate further endocrine endpoints and extend the monitoring to ground waters. The inclusion of progestagenic effects is crucial due to their multifaceted roles in various functions of organisms. Hence, three different Arxula-yeast hormone screens (estrogen, androgen, and progesterone receptors) were applied, revealing simultaneous exposure to diverse endocrine effects in surface and ground water matrices. Although effect profiles in surface waters showed mainly activation of hormone receptors, in-ground water samples inhibitory effects clearly predominate. Although toxicological thresholds are not yet legally binding, they are essential for effective regulatory measures and risk management to ensure the good ecological status of aquatic ecosystems. The results were compared with effect-based trigger values for ecological as well as human risk assessment depending on the sample matrix, none of which were exceeded.</p>","PeriodicalId":11793,"journal":{"name":"Environmental Toxicology and Chemistry","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Toxicology and Chemistry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/etojnl/vgae045","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The use of effect-based methods in water monitoring for identifying risks to aquatic organisms and human health is important for aiding regulatory decisions. In the past decades, the database on monitoring, especially in surface waters, has grown as this aquatic environment is openly exposed to various contamination sources. With regard to endocrine disruption, estrogenic and androgenic effects have been primarily investigated. Here, yeast-based bioassays emerged as potent tools, offering sensitivity to environmentally relevant concentrations and high robustness. The objectives of this study were to investigate further endocrine endpoints and extend the monitoring to ground waters. The inclusion of progestagenic effects is crucial due to their multifaceted roles in various functions of organisms. Hence, three different Arxula-yeast hormone screens (estrogen, androgen, and progesterone receptors) were applied, revealing simultaneous exposure to diverse endocrine effects in surface and ground water matrices. Although effect profiles in surface waters showed mainly activation of hormone receptors, in-ground water samples inhibitory effects clearly predominate. Although toxicological thresholds are not yet legally binding, they are essential for effective regulatory measures and risk management to ensure the good ecological status of aquatic ecosystems. The results were compared with effect-based trigger values for ecological as well as human risk assessment depending on the sample matrix, none of which were exceeded.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于效应的地表水和地下水内分泌效应分析,重点是孕激素的报告基因检测。
在水监测中使用基于效果的方法,以确定对水生生物和人类健康的风险,这对协助作出管制决定非常重要。在过去的几十年里,监测数据库,特别是地表水的监测数据库,随着这种水生环境公开暴露于各种污染源而不断增长。关于内分泌干扰,主要研究了雌激素和雄激素的影响。在这里,以酵母为基础的生物测定成为一种有效的工具,对环境相关浓度具有敏感性和高稳健性。本研究的目的是进一步研究内分泌终点,并将监测范围扩大到地下水。孕激素效应的纳入是至关重要的,因为它们在生物体的各种功能中起着多方面的作用。因此,应用了三种不同的酵母菌激素筛选(雌激素、雄激素和孕激素受体),揭示了同时暴露于地表水和地下水基质中不同的内分泌效应。虽然在地表水中的影响主要表现为激素受体的激活,但在地下水样品中的抑制作用明显占主导地位。虽然毒理学阈值尚未具有法律约束力,但它们对于有效的监管措施和风险管理至关重要,以确保水生生态系统的良好生态状态。将结果与基于效应的生态和人类风险评估触发值(取决于样本矩阵)进行比较,结果均未超过。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.40
自引率
9.80%
发文量
265
审稿时长
3.4 months
期刊介绍: The Society of Environmental Toxicology and Chemistry (SETAC) publishes two journals: Environmental Toxicology and Chemistry (ET&C) and Integrated Environmental Assessment and Management (IEAM). Environmental Toxicology and Chemistry is dedicated to furthering scientific knowledge and disseminating information on environmental toxicology and chemistry, including the application of these sciences to risk assessment.[...] Environmental Toxicology and Chemistry is interdisciplinary in scope and integrates the fields of environmental toxicology; environmental, analytical, and molecular chemistry; ecology; physiology; biochemistry; microbiology; genetics; genomics; environmental engineering; chemical, environmental, and biological modeling; epidemiology; and earth sciences. ET&C seeks to publish papers describing original experimental or theoretical work that significantly advances understanding in the area of environmental toxicology, environmental chemistry and hazard/risk assessment. Emphasis is given to papers that enhance capabilities for the prediction, measurement, and assessment of the fate and effects of chemicals in the environment, rather than simply providing additional data. The scientific impact of papers is judged in terms of the breadth and depth of the findings and the expected influence on existing or future scientific practice. Methodological papers must make clear not only how the work differs from existing practice, but the significance of these differences to the field. Site-based research or monitoring must have regional or global implications beyond the particular site, such as evaluating processes, mechanisms, or theory under a natural environmental setting.
期刊最新文献
Daphnids can safeguard the use of alternative bioassays to the acute fish toxicity test: A focus on neurotoxicity. ACCUMULATION OF TRACE ELEMENTS IN SOIL AND FAUNA WITHIN A SITE HISTORICALLY CONTAMINATED WITH COAL COMBUSTION RESIDUES. Runoff and accumulation of microplastics derived from polymer-coated fertilizer in japanese paddy fields. Transcriptomic response of an algal species (raphidocelis subcapitata) exposed to 22 per- and polyfluoroalkyl substances. Significant research needs for defensible hazard assessment of UV Filters in aquatic ecosystems Part 1: Effects data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1