首页 > 最新文献

Environmental Toxicology and Chemistry最新文献

英文 中文
Effects of Cadmium and Nickel Mixtures on Multiple Endpoints of the Microalga Raphidocelis subcapitata. 镉和镍混合物对微藻 Raphidocelis subcapitata 多个终点的影响
IF 3.6 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-01 Epub Date: 2024-06-12 DOI: 10.1002/etc.5927
Larissa Luiza Dos Reis, Cínthia Bruno de Abreu, Renan Castelhano Gebara, Giseli Swerts Rocha, Elson Longo, Adrislaine da Silva Mansano, Maria da Graça Gama Melão

It is crucial to investigate the effects of mixtures of contaminants on aquatic organisms, because they reflect what occurs in the environment. Cadmium (Cd) and nickel (Ni) are metals that co-occur in aquatic ecosystems, and information is scarce on their joint toxicity to Chlorophyceae using multiple endpoints. We evaluated the effects of isolated and combined Cd and Ni metals on multiple endpoints of the chlorophycean Raphidocelis subcapitata. The results showed that Cd inhibited cell density, increased reactive oxygen species (ROS) production (up to 308% at 0.075 mg L-1 of Cd), chlorophyll a (Chl a) fluorescence (0.050-0.100 mg L-1 of Cd), cell size (0.025-0.100 mg L-1 of Cd), and cell complexity in all concentrations evaluated. Nickel exposure decreased ROS production by up to 25% at 0.25 mg L-1 of Ni and Chl a fluorescence in all concentrations assessed. Cell density and oxygen-evolving complex (initial fluorescence/variable fluorescence [F0/Fv]) were only affected at 0.5 mg L-1 of Ni. In terms of algal growth, mixture toxicity showed antagonism at low doses and synergism at high doses, with a dose level change greater than the median inhibitory concentration. The independent action model and dose-level-dependent deviation best fit our data. Cadmium and Ni mixtures resulted in a significant increase in cell size and cell complexity, as well as changes in ROS production and Chl a fluorescence, and they did not affect the photosynthetic parameters. Environ Toxicol Chem 2024;43:1855-1869. © 2024 SETAC.

研究污染物混合物对水生生物的影响至关重要,因为它们反映了环境中发生的情况。镉(Cd)和镍(Ni)是共同存在于水生生态系统中的金属,而关于它们对叶绿藻的联合毒性的信息却很少。我们评估了镉和镍金属的分离和组合对叶绿藻 Raphidocelis subcapitata 多个终点的影响。结果表明,在所有评估浓度下,镉都会抑制细胞密度、增加活性氧(ROS)的产生(镉含量为 0.075 毫克/升时高达 308%)、叶绿素 a(Chl a)荧光(镉含量为 0.050-0.100 毫克/升时)、细胞大小(镉含量为 0.025-0.100 毫克/升时)和细胞复杂性。当镍浓度为 0.25 mg L-1 时,镍暴露会使 ROS 生成量最多减少 25%;在所有评估浓度下,镍暴露都会使 Chl a 荧光减少。细胞密度和氧演化复合物(初始荧光/可变荧光 [F0/Fv])仅在镍浓度为 0.5 mg L-1 时受到影响。在藻类生长方面,混合物毒性在低剂量时显示出拮抗作用,在高剂量时显示出协同作用,剂量水平变化大于中位抑制浓度。独立作用模型和剂量水平依赖偏差最适合我们的数据。镉和镍混合物导致细胞体积和细胞复杂性显著增加,ROS产生和Chl a荧光也发生了变化,但它们不影响光合作用参数。环境毒物化学 2024;00:1-15。© 2024 SETAC.
{"title":"Effects of Cadmium and Nickel Mixtures on Multiple Endpoints of the Microalga Raphidocelis subcapitata.","authors":"Larissa Luiza Dos Reis, Cínthia Bruno de Abreu, Renan Castelhano Gebara, Giseli Swerts Rocha, Elson Longo, Adrislaine da Silva Mansano, Maria da Graça Gama Melão","doi":"10.1002/etc.5927","DOIUrl":"10.1002/etc.5927","url":null,"abstract":"<p><p>It is crucial to investigate the effects of mixtures of contaminants on aquatic organisms, because they reflect what occurs in the environment. Cadmium (Cd) and nickel (Ni) are metals that co-occur in aquatic ecosystems, and information is scarce on their joint toxicity to Chlorophyceae using multiple endpoints. We evaluated the effects of isolated and combined Cd and Ni metals on multiple endpoints of the chlorophycean Raphidocelis subcapitata. The results showed that Cd inhibited cell density, increased reactive oxygen species (ROS) production (up to 308% at 0.075 mg L<sup>-1</sup> of Cd), chlorophyll a (Chl a) fluorescence (0.050-0.100 mg L<sup>-1</sup> of Cd), cell size (0.025-0.100 mg L<sup>-1</sup> of Cd), and cell complexity in all concentrations evaluated. Nickel exposure decreased ROS production by up to 25% at 0.25 mg L<sup>-1</sup> of Ni and Chl a fluorescence in all concentrations assessed. Cell density and oxygen-evolving complex (initial fluorescence/variable fluorescence [F<sub>0</sub>/F<sub>v</sub>]) were only affected at 0.5 mg L<sup>-1</sup> of Ni. In terms of algal growth, mixture toxicity showed antagonism at low doses and synergism at high doses, with a dose level change greater than the median inhibitory concentration. The independent action model and dose-level-dependent deviation best fit our data. Cadmium and Ni mixtures resulted in a significant increase in cell size and cell complexity, as well as changes in ROS production and Chl a fluorescence, and they did not affect the photosynthetic parameters. Environ Toxicol Chem 2024;43:1855-1869. © 2024 SETAC.</p>","PeriodicalId":11793,"journal":{"name":"Environmental Toxicology and Chemistry","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141305724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioconcentration of Per- and Polyfluoroalkyl Substances and Precursors in Fathead Minnow Tissues Environmentally Exposed to Aqueous Film-Forming Foam-Contaminated Waters. 全氟和多氟烷基物质及前体在暴露于水成膜泡沫污染水域环境中的黑头鲦鱼组织中的生物浓缩。
IF 3.6 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-01 Epub Date: 2024-06-19 DOI: 10.1002/etc.5926
Nicholas I Hill, Jitka Becanova, Simon Vojta, Larry B Barber, Denis R LeBlanc, Alan M Vajda, Heidi M Pickard, Rainer Lohmann

Exposure to per- and polyfluoroalkyl substances (PFAS) has been associated with toxicity in wildlife and negative health effects in humans. Decades of fire training activity at Joint Base Cape Cod (MA, USA) incorporated the use of aqueous film-forming foam (AFFF), which resulted in long-term PFAS contamination of sediments, groundwater, and hydrologically connected surface waters. To explore the bioconcentration potential of PFAS in complex environmental mixtures, a mobile laboratory was established to evaluate the bioconcentration of PFAS from AFFF-impacted groundwater by flow-through design. Fathead minnows (n = 24) were exposed to PFAS in groundwater over a 21-day period and tissue-specific PFAS burdens in liver, kidney, and gonad were derived at three different time points. The ∑PFAS concentrations in groundwater increased from approximately 10,000 ng/L at day 1 to 36,000 ng/L at day 21. The relative abundance of PFAS in liver, kidney, and gonad shifted temporally from majority perfluoroalkyl sulfonamides (FASAs) to perfluoroalkyl sulfonates (PFSAs). By day 21, mean ∑PFAS concentrations in tissues displayed a predominance in the order of liver > kidney > gonad. Generally, bioconcentration factors (BCFs) for FASAs, perfluoroalkyl carboxylates (PFCAs), and fluorotelomer sulfonates (FTS) increased with degree of fluorinated carbon chain length, but this was not evident for PFSAs. Perfluorooctane sulfonamide (FOSA) displayed the highest mean BCF (8700 L/kg) in day 21 kidney. Suspect screening results revealed the presence of several perfluoroalkyl sulfinate and FASA compounds present in groundwater and in liver for which pseudo-bioconcentration factors are also reported. The bioconcentration observed for precursor compounds and PFSA derivatives detected suggests alternative pathways for terminal PFAS exposure in aquatic wildlife and humans. Environ Toxicol Chem 2024;43:1795-1806. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

接触全氟烷基和多氟烷基物质 (PFAS) 与野生动物的毒性和人类的负面健康影响有关。科德角联合基地(美国马萨诸塞州)数十年的消防训练活动中使用了水成膜泡沫 (AFFF),导致沉积物、地下水和水文相连的地表水长期受到 PFAS 污染。为了探索复杂环境混合物中 PFAS 的生物浓缩潜力,我们建立了一个移动实验室,通过流动设计来评估受 AFFF 影响的地下水中 PFAS 的生物浓缩情况。黑头鲦鱼(n = 24)暴露于地下水中的全氟辛烷磺酸 21 天,在三个不同的时间点测定肝脏、肾脏和性腺中特定组织的全氟辛烷磺酸负担。地下水中的∑PFAS 浓度从第 1 天的约 10,000 纳克/升增加到第 21 天的 36,000 纳克/升。肝脏、肾脏和性腺中 PFAS 的相对丰度在时间上发生了变化,从以全氟烷基磺酰胺类化合物(FASAs)为主转变为以全氟烷基磺酸盐类化合物(PFSAs)为主。到第 21 天,组织中的∑PFAS 平均浓度显示出肝脏 > 肾脏 > 性腺的主要顺序。一般来说,FASAs、全氟烷基羧酸盐(PFCAs)和氟橡胶磺酸盐(FTS)的生物浓缩系数(BCFs)会随着氟化碳链长度的增加而增加,但全氟辛烷磺酸的生物浓缩系数并不明显。全氟辛烷磺酰胺(FOSA)在第 21 天肾脏中的平均生物浓缩系数(8700 升/千克)最高。疑似筛选结果显示,地下水和肝脏中存在多种全氟烷基亚磺酸盐和 FASA 化合物,并报告了这些化合物的假生物浓缩系数。观察到的前体化合物和检测到的全氟辛烷磺酸衍生物的生物浓缩表明,水生野生动物和人类接触全氟辛烷磺酸的最终途径有多种选择。环境毒物化学 2024;00:1-12。© 2024 The Author(s).环境毒理学与化学》由 Wiley Periodicals LLC 代表 SETAC 出版。
{"title":"Bioconcentration of Per- and Polyfluoroalkyl Substances and Precursors in Fathead Minnow Tissues Environmentally Exposed to Aqueous Film-Forming Foam-Contaminated Waters.","authors":"Nicholas I Hill, Jitka Becanova, Simon Vojta, Larry B Barber, Denis R LeBlanc, Alan M Vajda, Heidi M Pickard, Rainer Lohmann","doi":"10.1002/etc.5926","DOIUrl":"10.1002/etc.5926","url":null,"abstract":"<p><p>Exposure to per- and polyfluoroalkyl substances (PFAS) has been associated with toxicity in wildlife and negative health effects in humans. Decades of fire training activity at Joint Base Cape Cod (MA, USA) incorporated the use of aqueous film-forming foam (AFFF), which resulted in long-term PFAS contamination of sediments, groundwater, and hydrologically connected surface waters. To explore the bioconcentration potential of PFAS in complex environmental mixtures, a mobile laboratory was established to evaluate the bioconcentration of PFAS from AFFF-impacted groundwater by flow-through design. Fathead minnows (n = 24) were exposed to PFAS in groundwater over a 21-day period and tissue-specific PFAS burdens in liver, kidney, and gonad were derived at three different time points. The ∑PFAS concentrations in groundwater increased from approximately 10,000 ng/L at day 1 to 36,000 ng/L at day 21. The relative abundance of PFAS in liver, kidney, and gonad shifted temporally from majority perfluoroalkyl sulfonamides (FASAs) to perfluoroalkyl sulfonates (PFSAs). By day 21, mean ∑PFAS concentrations in tissues displayed a predominance in the order of liver > kidney > gonad. Generally, bioconcentration factors (BCFs) for FASAs, perfluoroalkyl carboxylates (PFCAs), and fluorotelomer sulfonates (FTS) increased with degree of fluorinated carbon chain length, but this was not evident for PFSAs. Perfluorooctane sulfonamide (FOSA) displayed the highest mean BCF (8700 L/kg) in day 21 kidney. Suspect screening results revealed the presence of several perfluoroalkyl sulfinate and FASA compounds present in groundwater and in liver for which pseudo-bioconcentration factors are also reported. The bioconcentration observed for precursor compounds and PFSA derivatives detected suggests alternative pathways for terminal PFAS exposure in aquatic wildlife and humans. Environ Toxicol Chem 2024;43:1795-1806. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.</p>","PeriodicalId":11793,"journal":{"name":"Environmental Toxicology and Chemistry","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141418375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the Functional Equivalency of Test Organism Performance in Negative and Solvent Controls During Chronic Sediment Ecotoxicity Studies Based on US Environmental Protection Agency Guidance. 根据美国环境保护局指南,评估慢性沉积物生态毒性研究期间阴性对照和溶剂对照中试验生物的功能等效性。
IF 3.6 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-01 Epub Date: 2023-03-22 DOI: 10.1002/etc.5576
Theodore Valenti, Kent Kabler, David Dreier, Kevin Henry, Alan Jones, Matt McCoole, Mark Cafarella, Jennifer Collins, Michael Bradley, Alan Samel, Manoit Basu

The US Environmental Protection Agency (USEPA) considers sediment toxicity tests as conditional registration requirements for pesticides with soil Kd ≥50 L/kg-solid, Koc ≥1000 L/kg-organic carbon, or log Kow ≥3. The hydrophobicity of these compounds often necessitates use of solvents to ensure accurate and homogeneous dosing of spiked-sediment studies. For sediment tests, a volatile solvent (e.g., acetone) is generally used as a transient carrier. Due to low water solubility, test material is dissolved in a volatile solvent to create stock solutions. A measured aliquot of stock solution is then mixed with sand substrate, after which the solvent is evaporated. This spiking process results in negligible solvent exposure to organisms. In 2016, USEPA released final ecotoxicity test guidelines for subchronic freshwater (850.1735) and marine (850.1740) sediment test. These methods provide an option for conducting experiments with only a solvent control and no negative control. To adopt this testing strategy, functional equivalency between the negative and solvent control must be demonstrated. These test guidelines describe specific factors that should be considered for evaluating functional equivalency, including (a) the concentration of solvent in the test sediment after evaporation, (b) the levels of solvent that are known to affect organism health, (c) the known impurities in the solvent and their potential impact on organism health, and (d) the historical organism performance of solvent versus negative controls. Our analysis considers these factors and overall supports the elimination of the negative control requirement because this change is unlikely to impact the robustness or interpretability of spiked-sediment toxicity tests. Environ Toxicol Chem 2024;43:1740-1746. © 2023 CropLife America. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

美国环境保护局(USEPA)将沉积物毒性测试视为土壤 Kd ≥50 升/千克-固体、Koc ≥1000 升/千克-有机碳或辛醇/水分配系数对数≥3 的农药的有条件登记要求。由于这些化合物的疏水性,通常需要使用溶剂来确保加标沉积物研究中剂量的准确性和均匀性。在沉积物测试中,通常使用挥发性溶剂(如丙酮)作为瞬时载体。由于测试材料的水溶性较低,因此要将其溶解在挥发性溶剂中,制成储备溶液。然后将定量的等分储备溶液与砂基质混合,然后蒸发溶剂。这种加标过程可使生物接触到的溶剂微乎其微。2016 年,美国环保局发布了亚慢性淡水(850.1735)和海洋(850.1740)沉积物测试的最终生态毒性测试指南。这些方法为只进行溶剂对照而不进行阴性对照的实验提供了一种选择。要采用这种测试策略,必须证明阴性对照和溶剂对照之间的功能等同。这些测试指南描述了评估功能等效性时应考虑的具体因素,包括 (a) 蒸发后测试沉积物中的溶剂浓度,(b) 已知会影响生物健康的溶剂水平,(c) 溶剂中的已知杂质及其对生物健康的潜在影响,以及 (d) 溶剂对照与阴性对照的生物历史表现。我们的分析考虑了这些因素,总体上支持取消阴性对照要求,因为这一变化不太可能影响加标沉积物毒性测试的稳健性或可解释性。环境毒物化学 2024;43:1740-1746。© 2023 CropLife America.环境毒理学与化学》由 Wiley Periodicals LLC 代表 SETAC 出版。
{"title":"Evaluating the Functional Equivalency of Test Organism Performance in Negative and Solvent Controls During Chronic Sediment Ecotoxicity Studies Based on US Environmental Protection Agency Guidance.","authors":"Theodore Valenti, Kent Kabler, David Dreier, Kevin Henry, Alan Jones, Matt McCoole, Mark Cafarella, Jennifer Collins, Michael Bradley, Alan Samel, Manoit Basu","doi":"10.1002/etc.5576","DOIUrl":"10.1002/etc.5576","url":null,"abstract":"<p><p>The US Environmental Protection Agency (USEPA) considers sediment toxicity tests as conditional registration requirements for pesticides with soil Kd ≥50 L/kg-solid, Koc ≥1000 L/kg-organic carbon, or log Kow ≥3. The hydrophobicity of these compounds often necessitates use of solvents to ensure accurate and homogeneous dosing of spiked-sediment studies. For sediment tests, a volatile solvent (e.g., acetone) is generally used as a transient carrier. Due to low water solubility, test material is dissolved in a volatile solvent to create stock solutions. A measured aliquot of stock solution is then mixed with sand substrate, after which the solvent is evaporated. This spiking process results in negligible solvent exposure to organisms. In 2016, USEPA released final ecotoxicity test guidelines for subchronic freshwater (850.1735) and marine (850.1740) sediment test. These methods provide an option for conducting experiments with only a solvent control and no negative control. To adopt this testing strategy, functional equivalency between the negative and solvent control must be demonstrated. These test guidelines describe specific factors that should be considered for evaluating functional equivalency, including (a) the concentration of solvent in the test sediment after evaporation, (b) the levels of solvent that are known to affect organism health, (c) the known impurities in the solvent and their potential impact on organism health, and (d) the historical organism performance of solvent versus negative controls. Our analysis considers these factors and overall supports the elimination of the negative control requirement because this change is unlikely to impact the robustness or interpretability of spiked-sediment toxicity tests. Environ Toxicol Chem 2024;43:1740-1746. © 2023 CropLife America. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.</p>","PeriodicalId":11793,"journal":{"name":"Environmental Toxicology and Chemistry","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9507189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizing Freshwater Ecotoxicity of More Than 9000 Chemicals by Combining Different Levels of Available Measured Test Data with In Silico Predictions. 通过将不同水平的可用测量测试数据与硅学预测相结合,确定 9000 多种化学品的淡水生态毒性特征。
IF 3.6 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-01 Epub Date: 2024-06-11 DOI: 10.1002/etc.5929
Mélanie Douziech, Susan Anyango Oginah, Laura Golsteijn, Michael Zwicky Hauschild, Olivier Jolliet, Mikołaj Owsianiak, Leo Posthuma, Peter Fantke

Ecotoxicological impacts of chemicals released into the environment are characterized by combining fate, exposure, and effects. For characterizing effects, species sensitivity distributions (SSDs) estimate toxic pressures of chemicals as the potentially affected fraction of species. Life cycle assessment (LCA) uses SSDs to identify products with lowest ecotoxicological impacts. To reflect ambient concentrations, the Global Life Cycle Impact Assessment Method (GLAM) ecotoxicity task force recently recommended deriving SSDs for LCA based on chronic EC10s (10% effect concentration, for a life-history trait) and using the 20th percentile of an EC10-based SSD as a working point. However, because we lacked measured effect concentrations, impacts of only few chemicals were assessed, underlining data limitations for decision support. The aims of this paper were therefore to derive and validate freshwater SSDs by combining measured effect concentrations with in silico methods. Freshwater effect factors (EFs) and uncertainty estimates for use in GLAM-consistent life cycle impact assessment were then derived by combining three elements: (1) using intraspecies extrapolating effect data to estimate EC10s, (2) using interspecies quantitative structure-activity relationships, or (3) assuming a constant slope of 0.7 to derive SSDs. Species sensitivity distributions, associated EFs, and EF confidence intervals for 9862 chemicals, including data-poor ones, were estimated based on these elements. Intraspecies extrapolations and the fixed slope approach were most often applied. The resulting EFs were consistent with EFs derived from SSD-EC50 models, implying a similar chemical ecotoxicity rank order and method robustness. Our approach is an important step toward considering the potential ecotoxic impacts of chemicals currently neglected in assessment frameworks due to limited test data. Environ Toxicol Chem 2024;43:1914-1927. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

释放到环境中的化学品的生态毒理学影响是通过结合归宿、暴露和效应来描述的。为描述影响,物种敏感性分布(SSD)将化学品的毒性压力估算为可能受影响物种的比例。生命周期评估(LCA)使用物种敏感性分布来确定对生态毒理学影响最小的产品。为了反映环境浓度,全球生命周期影响评估方法(GLAM)生态毒性工作组最近建议,根据慢性 EC10(对于生命史特征而言,10% 的影响浓度)推导出生命周期影响评估的 SSD,并将基于 EC10 的 SSD 的 20 百分位数作为工作点。然而,由于我们缺乏测量的效应浓度,因此只评估了少数化学品的影响,这凸显了决策支持数据的局限性。因此,本文旨在通过将测量的效应浓度与硅学方法相结合,得出并验证淡水 SSD。然后,结合以下三个要素,得出淡水影响因子(EF)和不确定性估计值,用于与 GLAM 一致的生命周期影响评估:(1)使用种内效应外推数据估算 EC10,(2)使用种间定量结构-活性关系,或(3)假设 0.7 的恒定斜率得出 SSD。根据这些要素估算了 9862 种化学品(包括数据贫乏的化学品)的物种敏感性分布、相关 EF 和 EF 置信区间。物种内推断法和固定斜率法是最常用的方法。得出的 EF 与 SSD-EC50 模型得出的 EF 一致,这意味着化学生态毒性等级顺序和方法的稳健性相似。我们的方法是考虑化学品潜在生态毒性影响的重要一步,目前由于测试数据有限,这些影响在评估框架中被忽视了。环境毒物化学 2024;00:1-14。© 2024 作者。环境毒理学与化学》由 Wiley Periodicals LLC 代表 SETAC 出版。
{"title":"Characterizing Freshwater Ecotoxicity of More Than 9000 Chemicals by Combining Different Levels of Available Measured Test Data with In Silico Predictions.","authors":"Mélanie Douziech, Susan Anyango Oginah, Laura Golsteijn, Michael Zwicky Hauschild, Olivier Jolliet, Mikołaj Owsianiak, Leo Posthuma, Peter Fantke","doi":"10.1002/etc.5929","DOIUrl":"10.1002/etc.5929","url":null,"abstract":"<p><p>Ecotoxicological impacts of chemicals released into the environment are characterized by combining fate, exposure, and effects. For characterizing effects, species sensitivity distributions (SSDs) estimate toxic pressures of chemicals as the potentially affected fraction of species. Life cycle assessment (LCA) uses SSDs to identify products with lowest ecotoxicological impacts. To reflect ambient concentrations, the Global Life Cycle Impact Assessment Method (GLAM) ecotoxicity task force recently recommended deriving SSDs for LCA based on chronic EC10s (10% effect concentration, for a life-history trait) and using the 20th percentile of an EC10-based SSD as a working point. However, because we lacked measured effect concentrations, impacts of only few chemicals were assessed, underlining data limitations for decision support. The aims of this paper were therefore to derive and validate freshwater SSDs by combining measured effect concentrations with in silico methods. Freshwater effect factors (EFs) and uncertainty estimates for use in GLAM-consistent life cycle impact assessment were then derived by combining three elements: (1) using intraspecies extrapolating effect data to estimate EC10s, (2) using interspecies quantitative structure-activity relationships, or (3) assuming a constant slope of 0.7 to derive SSDs. Species sensitivity distributions, associated EFs, and EF confidence intervals for 9862 chemicals, including data-poor ones, were estimated based on these elements. Intraspecies extrapolations and the fixed slope approach were most often applied. The resulting EFs were consistent with EFs derived from SSD-EC50 models, implying a similar chemical ecotoxicity rank order and method robustness. Our approach is an important step toward considering the potential ecotoxic impacts of chemicals currently neglected in assessment frameworks due to limited test data. Environ Toxicol Chem 2024;43:1914-1927. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.</p>","PeriodicalId":11793,"journal":{"name":"Environmental Toxicology and Chemistry","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141300386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Tissue-Specific Eco-Exposome: Differential Pharmaceutical Bioaccumulation and Disposition in Fish among Trophic Positions. 组织特异性生态暴露体:鱼类不同营养级的药物生物累积和处置差异。
IF 3.6 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-01 Epub Date: 2024-06-18 DOI: 10.1002/etc.5931
Jaylen L Sims, Alexander R Cole, Zachary S Moran, Charles M Mansfield, Bianca Possamai, Macarena Rojo, Ryan S King, Cole W Matson, Bryan W Brooks

Though bioaccumulation of pharmaceuticals by aquatic organisms continues to receive scientific attention, the internal disposition of these contaminants among different tissue compartments of fish species has been infrequently investigated, particularly among fish at different trophic positions. We tested a human to fish biological read-across hypothesis for contaminant disposition by examining tissue-specific accumulation in three understudied species, longnose gar (Lepisosteus osseus; piscivore), gizzard shad (Dorosoma cepedianum; planktivore/detritivore), and smallmouth buffalo (Ictiobus bubalus; benthivore), from a river influenced by municipal effluent discharge. In addition to surface water, fish plasma, and brain, gill, gonad, liver, and lateral muscle fillet tissues were analyzed via isotope dilution liquid chromatography tandem mass spectrometry. Caffeine and sucralose, two common effluent tracers, were quantitated at low micrograms per liter levels in surface water, while an anticonvulsant, carbamazepine, was observed at levels up to 37 ng/L. The selective serotonin reuptake inhibitors (SSRIs) fluoxetine and sertraline and primary metabolites were detected in at least one tissue of all three species at low micrograms per kilogram concentrations. Within each species, brain and liver of select fish contained the highest levels of SSRIs compared to plasma and other tissues, which is generally consistent with human tissue disposition patterns. However, we observed differential accumulation among specific tissue types and species. For example, mean levels of sertraline in brain and liver tissues were 13.4 µg/kg and 1.5 µg/kg in gizzard shad and 1.3 µg/kg and 7.3 µg/kg in longnose gar, respectively. In contrast, smallmouth buffalo did not consistently accumulate SSRIs to detectable levels. Tissue-specific eco-exposome efforts are necessary to understand mechanisms associated with such marked bioaccumulation and internal dispositional differences among freshwater fish species occupying different trophic positions. Environ Toxicol Chem 2024;43:1894-1902. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

尽管水生生物对药物的生物蓄积性一直受到科学界的关注,但这些污染物在鱼类物种不同组织间的内部处置却鲜有研究,尤其是在处于不同营养级的鱼类之间。我们通过研究受市政污水排放影响的河流中长鼻嘎鱼(Lepisosteus osseus; piscivore)、鰶鱼(Dorosoma cepedianum; planktivore/detritivore)和小口水牛(Ictiobus bubalus; benthivore)这三种未被充分研究的鱼类的组织特异性蓄积情况,检验了人类对鱼类污染物处置的生物交叉假说。除地表水外,还通过同位素稀释液相色谱串联质谱法分析了鱼血浆以及脑、鳃、生殖腺、肝脏和侧肌鱼片组织。咖啡因和三氯蔗糖这两种常见的污水示踪剂在地表水中的定量水平较低,仅为微克/升,而抗惊厥药卡马西平在地表水中的定量水平则高达 37 纳克/升。在所有三个物种的至少一种组织中都检测到了选择性血清素再摄取抑制剂(SSRIs)氟西汀和舍曲林及其主要代谢物,其浓度较低,为每千克微克。在每个物种中,与血浆和其他组织相比,精选鱼类的大脑和肝脏中 SSRIs 的含量最高,这与人体组织的处置模式基本一致。不过,我们观察到特定组织类型和物种之间的积累情况有所不同。例如,鰶鱼大脑和肝脏组织中舍曲林的平均含量分别为 13.4 微克/千克和 1.5 微克/千克,长鼻梭鱼分别为 1.3 微克/千克和 7.3 微克/千克。相比之下,小口水牛体内的 SSRIs 并未持续累积到可检测到的水平。有必要开展组织特异性生态外显子组研究,以了解占据不同营养级的淡水鱼类物种之间如此明显的生物累积和内部处置差异的相关机制。环境毒物化学 2024;00:1-9。© 2024 The Author(s).环境毒理学与化学》由 Wiley Periodicals LLC 代表 SETAC 出版。
{"title":"The Tissue-Specific Eco-Exposome: Differential Pharmaceutical Bioaccumulation and Disposition in Fish among Trophic Positions.","authors":"Jaylen L Sims, Alexander R Cole, Zachary S Moran, Charles M Mansfield, Bianca Possamai, Macarena Rojo, Ryan S King, Cole W Matson, Bryan W Brooks","doi":"10.1002/etc.5931","DOIUrl":"10.1002/etc.5931","url":null,"abstract":"<p><p>Though bioaccumulation of pharmaceuticals by aquatic organisms continues to receive scientific attention, the internal disposition of these contaminants among different tissue compartments of fish species has been infrequently investigated, particularly among fish at different trophic positions. We tested a human to fish biological read-across hypothesis for contaminant disposition by examining tissue-specific accumulation in three understudied species, longnose gar (Lepisosteus osseus; piscivore), gizzard shad (Dorosoma cepedianum; planktivore/detritivore), and smallmouth buffalo (Ictiobus bubalus; benthivore), from a river influenced by municipal effluent discharge. In addition to surface water, fish plasma, and brain, gill, gonad, liver, and lateral muscle fillet tissues were analyzed via isotope dilution liquid chromatography tandem mass spectrometry. Caffeine and sucralose, two common effluent tracers, were quantitated at low micrograms per liter levels in surface water, while an anticonvulsant, carbamazepine, was observed at levels up to 37 ng/L. The selective serotonin reuptake inhibitors (SSRIs) fluoxetine and sertraline and primary metabolites were detected in at least one tissue of all three species at low micrograms per kilogram concentrations. Within each species, brain and liver of select fish contained the highest levels of SSRIs compared to plasma and other tissues, which is generally consistent with human tissue disposition patterns. However, we observed differential accumulation among specific tissue types and species. For example, mean levels of sertraline in brain and liver tissues were 13.4 µg/kg and 1.5 µg/kg in gizzard shad and 1.3 µg/kg and 7.3 µg/kg in longnose gar, respectively. In contrast, smallmouth buffalo did not consistently accumulate SSRIs to detectable levels. Tissue-specific eco-exposome efforts are necessary to understand mechanisms associated with such marked bioaccumulation and internal dispositional differences among freshwater fish species occupying different trophic positions. Environ Toxicol Chem 2024;43:1894-1902. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.</p>","PeriodicalId":11793,"journal":{"name":"Environmental Toxicology and Chemistry","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141418404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the Role of Low-Dose Polystyrene Microplastic in Copper Toxicity to Rice Seed (Oryza sativa L.). 了解低剂量聚苯乙烯微塑料在水稻种子(Oryza sativa L.)铜毒性中的作用。
IF 3.6 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-01 Epub Date: 2024-06-05 DOI: 10.1002/etc.5928
Xuesong Liu, Hailei Su, Fanfan Wang, Binni Ma, Yanru Tao, Ke Cao, Yaqin Shen, Wensi Zhao, Yuan Wei, Fengchang Wu

There is still much to learn with respect to the potential for microplastics (MPs) to interact with environmental toxins and biota. In the present study, we investigated the effect of MPs on the toxicity of copper (Cu) to rice seeds (Oryza sativa L.). The 7-day median effective concentration (EC50) value of MPs on rice seed germination was 864 mg/L (95% confidence interval [CI] 839 to 897 mg/L). We found that MPs slightly reduced Cu toxicity to rice seeds. The 7-day EC50 of Cu on rice seed germination increased from 7.29 mg/L (95% CI 7.10-7.52 mg/L) to 7.93 mg/L (95% CI 7.58-8.08 mg/L) in the presence of 20 mg/L MPs. We examined this toxicity reduction phenomenon by investigating the role of MPs in the process of Cu transport, Cu accumulation, and metabolic responses. Further investigation found that the MPs used in the present study hardly adsorbed Cu, but these MPs accumulated on the coats of rice seeds and significantly reduced Cu accumulation in rice seedlings. When Cu concentration was 10 mg/L, the presence of MPs reduced the accumulation of Cu in rice seedlings by 34%. We also found that, compared with only Cu present, the addition of MPs resulted in lower reactive oxygen species accumulation and higher catalase activity and glutathione levels in rice seedlings, which also contributed to Cu toxicity reduction. Collectively, the present study shows that polystyrene MPs have the potential to form associations with plant structures which can ultimately impact heavy metal bioaccessibility and therefore toxicity. Environ Toxicol Chem 2024;43:1870-1879. © 2024 SETAC.

关于微塑料(MPs)与环境毒素和生物群相互作用的潜力,还有很多东西需要学习。在本研究中,我们调查了微塑料对水稻种子(Oryza sativa L.)铜(Cu)毒性的影响。MPs 对水稻种子萌发的 7 天有效浓度(EC50)中值为 864 mg/L(95% 置信区间 [CI] 为 839 至 897 mg/L)。我们发现 MPs 能略微降低铜对水稻种子的毒性。在 20 mg/L MPs 的存在下,铜对水稻种子萌发的 7 天 EC50 值从 7.29 mg/L (95% CI 7.10-7.52 mg/L)升至 7.93 mg/L(95% CI 7.58-8.08 mg/L)。我们通过研究 MPs 在铜转运、铜积累和代谢反应过程中的作用,对这种毒性降低现象进行了研究。进一步的研究发现,本研究中使用的 MPs 几乎不吸附铜,但这些 MPs 在水稻种子的外皮上积累,并显著降低了水稻幼苗的铜积累。当 Cu 浓度为 10 mg/L 时,MPs 的存在使 Cu 在水稻秧苗中的积累减少了 34%。我们还发现,与只存在 Cu 相比,MPs 的添加会降低水稻秧苗中活性氧的积累,提高过氧化氢酶活性和谷胱甘肽水平,这也有助于降低 Cu 的毒性。总之,本研究表明,聚苯乙烯多孔材料有可能与植物结构形成关联,从而最终影响重金属的生物可及性,进而影响毒性。环境毒物化学 2024;00:1-10。© 2024 SETAC.
{"title":"Understanding the Role of Low-Dose Polystyrene Microplastic in Copper Toxicity to Rice Seed (Oryza sativa L.).","authors":"Xuesong Liu, Hailei Su, Fanfan Wang, Binni Ma, Yanru Tao, Ke Cao, Yaqin Shen, Wensi Zhao, Yuan Wei, Fengchang Wu","doi":"10.1002/etc.5928","DOIUrl":"10.1002/etc.5928","url":null,"abstract":"<p><p>There is still much to learn with respect to the potential for microplastics (MPs) to interact with environmental toxins and biota. In the present study, we investigated the effect of MPs on the toxicity of copper (Cu) to rice seeds (Oryza sativa L.). The 7-day median effective concentration (EC50) value of MPs on rice seed germination was 864 mg/L (95% confidence interval [CI] 839 to 897 mg/L). We found that MPs slightly reduced Cu toxicity to rice seeds. The 7-day EC50 of Cu on rice seed germination increased from 7.29 mg/L (95% CI 7.10-7.52 mg/L) to 7.93 mg/L (95% CI 7.58-8.08 mg/L) in the presence of 20 mg/L MPs. We examined this toxicity reduction phenomenon by investigating the role of MPs in the process of Cu transport, Cu accumulation, and metabolic responses. Further investigation found that the MPs used in the present study hardly adsorbed Cu, but these MPs accumulated on the coats of rice seeds and significantly reduced Cu accumulation in rice seedlings. When Cu concentration was 10 mg/L, the presence of MPs reduced the accumulation of Cu in rice seedlings by 34%. We also found that, compared with only Cu present, the addition of MPs resulted in lower reactive oxygen species accumulation and higher catalase activity and glutathione levels in rice seedlings, which also contributed to Cu toxicity reduction. Collectively, the present study shows that polystyrene MPs have the potential to form associations with plant structures which can ultimately impact heavy metal bioaccessibility and therefore toxicity. Environ Toxicol Chem 2024;43:1870-1879. © 2024 SETAC.</p>","PeriodicalId":11793,"journal":{"name":"Environmental Toxicology and Chemistry","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141260907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Egg Mercury Concentration and Egg Size Varies with Position in the Laying Sequence in two Songbird Species. 两种鸣禽的卵汞浓度和卵大小随产卵顺序中的位置而变化。
IF 3.6 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-01 Epub Date: 2024-06-10 DOI: 10.1002/etc.5900
C Alex Hartman, Joshua T Ackerman, Breanne Cooney, Mark P Herzog

In birds, mercury embryotoxicity can occur through the transfer of mercury from the female to her eggs. Maternal transfer of mercury can vary by egg position in the laying sequence, with first-laid eggs often exhibiting greater mercury concentrations than subsequently laid eggs. We studied egg mercury concentration, mercury burden (total amount of mercury in the egg), and egg morphometrics by egg position in the laying sequence for two songbirds: tree swallows (Tachycineta bicolor) and house wrens (Troglodytes aedon). Egg mercury concentration in the second egg laid was 14% lower for tree swallows and 6% lower for house wrens in comparison with the first egg laid. These results indicate that in both species, after an initial relatively high transfer of mercury into the first egg laid, a smaller amount of mercury was transferred to the second egg laid. This lower mercury concentration persisted among all subsequently laid eggs (eggs three to eight) in tree swallows (all were 14%-16% lower than egg 1), but mercury concentrations in subsequently laid house wren eggs (eggs three to seven) returned to levels observed in the first egg laid (all were 1% lower to 3% greater than egg 1). Egg size increased with position in the laying sequence in both species; the predicted volume of egg 7 was 5% and 6% greater than that of egg 1 in tree swallows and house wrens, respectively. This change was caused by a significant increase in egg width, but not egg length, with position in the laying sequence. The percentage of decline in mercury concentration with position in the laying sequence was considerably lower in tree swallows and house wrens compared with other bird taxonomic groups, suggesting that there are key differences in the maternal transfer of mercury into songbird eggs compared with other birds. Finally, we performed simulations to evaluate how within-clutch variation in egg mercury concentrations affected estimates of mean mercury concentrations in each clutch and the overall sampled population, which has direct implications for sampling designs. Environ Toxicol Chem 2024;43:1844-1854. Published 2024. This article is a U.S. Government work and is in the public domain in the USA.

在鸟类中,汞的胚胎毒性可通过雌鸟将汞转移到蛋中而发生。母体的汞转移会因卵子在产卵序列中的位置而异,第一批产下的卵子通常比随后产下的卵子显示出更高的汞浓度。我们研究了两种鸣禽:树燕(Tachycineta bicolor)和家鹪鹩(Troglodytes aedon)的卵汞浓度、汞负荷(卵中的汞总量)以及卵在产卵顺序中不同位置的形态计量学。与第一枚蛋相比,树燕第二枚蛋中的汞浓度低 14%,家鸦低 6%。这些结果表明,在这两个物种中,在第一次产下的蛋中汞转移量相对较高之后,第二次产下的蛋中汞转移量较低。这种较低的汞浓度在树燕随后产下的所有卵(第 3 到第 8 个卵)中都持续存在(都比第 1 个卵低 14%-16%),但在随后产下的鹪鹩卵(第 3 到第 7 个卵)中,汞浓度又回到了在第 1 个卵中观察到的水平(都比第 1 个卵低 1%到高 3%)。两个物种的卵大小都随着产卵顺序中的位置而增加;树燕和鹪鹩第 7 枚卵的预测体积分别比第 1 枚卵大 5%和 6%。这种变化是由于卵的宽度(而不是长度)随产卵顺序的位置而显著增加。与其他鸟类相比,树燕和鹪鹩的汞浓度随产卵顺序中的位置而下降的百分比要低得多,这表明与其他鸟类相比,母体将汞转移到鸣禽卵中存在着关键的差异。最后,我们进行了模拟,以评估卵中汞浓度的离合器内变化如何影响每个离合器和整个采样种群中平均汞浓度的估计值,这对采样设计有直接影响。环境毒物化学 2024;00:1-11。发表于 2024 年。本文为美国政府著作,在美国属于公共领域。
{"title":"Egg Mercury Concentration and Egg Size Varies with Position in the Laying Sequence in two Songbird Species.","authors":"C Alex Hartman, Joshua T Ackerman, Breanne Cooney, Mark P Herzog","doi":"10.1002/etc.5900","DOIUrl":"10.1002/etc.5900","url":null,"abstract":"<p><p>In birds, mercury embryotoxicity can occur through the transfer of mercury from the female to her eggs. Maternal transfer of mercury can vary by egg position in the laying sequence, with first-laid eggs often exhibiting greater mercury concentrations than subsequently laid eggs. We studied egg mercury concentration, mercury burden (total amount of mercury in the egg), and egg morphometrics by egg position in the laying sequence for two songbirds: tree swallows (Tachycineta bicolor) and house wrens (Troglodytes aedon). Egg mercury concentration in the second egg laid was 14% lower for tree swallows and 6% lower for house wrens in comparison with the first egg laid. These results indicate that in both species, after an initial relatively high transfer of mercury into the first egg laid, a smaller amount of mercury was transferred to the second egg laid. This lower mercury concentration persisted among all subsequently laid eggs (eggs three to eight) in tree swallows (all were 14%-16% lower than egg 1), but mercury concentrations in subsequently laid house wren eggs (eggs three to seven) returned to levels observed in the first egg laid (all were 1% lower to 3% greater than egg 1). Egg size increased with position in the laying sequence in both species; the predicted volume of egg 7 was 5% and 6% greater than that of egg 1 in tree swallows and house wrens, respectively. This change was caused by a significant increase in egg width, but not egg length, with position in the laying sequence. The percentage of decline in mercury concentration with position in the laying sequence was considerably lower in tree swallows and house wrens compared with other bird taxonomic groups, suggesting that there are key differences in the maternal transfer of mercury into songbird eggs compared with other birds. Finally, we performed simulations to evaluate how within-clutch variation in egg mercury concentrations affected estimates of mean mercury concentrations in each clutch and the overall sampled population, which has direct implications for sampling designs. Environ Toxicol Chem 2024;43:1844-1854. Published 2024. This article is a U.S. Government work and is in the public domain in the USA.</p>","PeriodicalId":11793,"journal":{"name":"Environmental Toxicology and Chemistry","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141295774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Free Versus Bound Concentration: Passive Dosing from Polymer Meshes Elucidates Drivers of Toxicity in Aquatic Tests with Benthic Invertebrates. 游离浓度与结合浓度:从聚合物网格中被动加药:阐明底栖无脊椎动物水生试验中的毒性驱动因素
IF 3.6 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-01 Epub Date: 2022-10-11 DOI: 10.1002/etc.5473
Fabian C Fischer, Kyoshiro Hiki, Satoshi Endo

Aquatic toxicity tests with benthic organisms are used to predict the toxicity of hydrophobic organic chemicals (HOCs) in sediments, assuming that the freely dissolved concentration (Cfree) is a good surrogate of bioavailability in the exposure system. However, Cfree of HOCs is difficult to control in water-only setups. Moreover, the role of dissolved organic carbon (DOC) in the occurrence of toxicity needs clarification because DOC concentrations in sediment porewater can be substantially higher than in typical test water. We introduced biocompatible polyethylene meshes with high sorptive capacities and fast release kinetics as a novel passive dosing phase, which maintained Cfree and Cwater (i.e., free + DOC-bound) in Hyalella azteca water-only tests. Adding the supernatant fraction of peat to test water as a DOC source increased Cwater to an extent comparable to sediment porewater and significantly increased and decreased the observed toxicity of permethrin and benzo[a]pyrene, respectively, to H. azteca. This result indicates that DOC can both benefit and harm test species likely due to the increased health after ingestion of DOC and to the uptake of DOC-bound HOCs, respectively. Passive dosing in combination with the addition of sediment DOC surrogates may better reflect exposure and habitat conditions in sediment porewater than conventional aquatic tests. Environ Toxicol Chem 2024;43:1747-1756. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

底栖生物水生毒性试验用于预测沉积物中疏水性有机化学品(HOCs)的毒性,假定自由溶解浓度(Cfree)是暴露系统中生物利用率的良好替代物。然而,在纯水环境中很难控制 HOC 的 Cfree。此外,由于沉积物孔隙水中的溶解有机碳(DOC)浓度可能远高于典型的测试水,因此需要明确溶解有机碳(DOC)在毒性发生过程中的作用。我们引入了具有高吸附能力和快速释放动力学的生物相容性聚乙烯网,作为一种新型的被动加药阶段,在只含水的 Hyalella azteca 试验中维持 Cfree 和 Cwater(即游离+DOC 结合)。将泥炭的上清液部分作为 DOC 源添加到测试水中,可使 Cwater 的增加程度与沉积物孔隙水相当,并可分别显著增加和减少氯菊酯和苯并[a]芘对 H. azteca 的毒性。这一结果表明,DOC 对测试物种既有利又有害,这可能分别是由于摄入 DOC 后健康状况的改善以及摄入 DOC 结合的 HOCs 的缘故。与传统的水生测试相比,被动加药与添加沉积物 DOC 替代物相结合,可以更好地反映沉积物孔隙水中的暴露和生境条件。环境毒物化学 2022;00:1-10。© 2022 作者。环境毒理学与化学》由 Wiley Periodicals LLC 代表 SETAC 出版。
{"title":"Free Versus Bound Concentration: Passive Dosing from Polymer Meshes Elucidates Drivers of Toxicity in Aquatic Tests with Benthic Invertebrates.","authors":"Fabian C Fischer, Kyoshiro Hiki, Satoshi Endo","doi":"10.1002/etc.5473","DOIUrl":"10.1002/etc.5473","url":null,"abstract":"<p><p>Aquatic toxicity tests with benthic organisms are used to predict the toxicity of hydrophobic organic chemicals (HOCs) in sediments, assuming that the freely dissolved concentration (C<sub>free</sub>) is a good surrogate of bioavailability in the exposure system. However, C<sub>free</sub> of HOCs is difficult to control in water-only setups. Moreover, the role of dissolved organic carbon (DOC) in the occurrence of toxicity needs clarification because DOC concentrations in sediment porewater can be substantially higher than in typical test water. We introduced biocompatible polyethylene meshes with high sorptive capacities and fast release kinetics as a novel passive dosing phase, which maintained C<sub>free</sub> and C<sub>water</sub> (i.e., free + DOC-bound) in Hyalella azteca water-only tests. Adding the supernatant fraction of peat to test water as a DOC source increased C<sub>water</sub> to an extent comparable to sediment porewater and significantly increased and decreased the observed toxicity of permethrin and benzo[a]pyrene, respectively, to H. azteca. This result indicates that DOC can both benefit and harm test species likely due to the increased health after ingestion of DOC and to the uptake of DOC-bound HOCs, respectively. Passive dosing in combination with the addition of sediment DOC surrogates may better reflect exposure and habitat conditions in sediment porewater than conventional aquatic tests. Environ Toxicol Chem 2024;43:1747-1756. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.</p>","PeriodicalId":11793,"journal":{"name":"Environmental Toxicology and Chemistry","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33448736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intraspecific Variation in Mercury Contamination of Alligator Snapping Turtles (Macrochelys temminckii). 鳄鱼鳄龟(Macrochelys temminckii)汞污染的种内差异。
IF 3.6 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-01 Epub Date: 2024-05-28 DOI: 10.1002/etc.5888
David Rosenbaum, Carmen G Montaña, Yanli Zhang, Matthew M Chumchal, Daniel Saenz, Christopher M Schalk

Macrochelys temminckii (alligator snapping turtle) is an aquatic turtle endemic to the southeastern United States that was proposed for listing under the Endangered Species Act in 2021. In the present study we analyzed total mercury (THg) concentrations in skeletal muscle, tail clips, and nail tissue of 93 M. temminckii sampled from 14 waterbodies in eastern Texas (USA). Our objectives were to assess (1) the degree of correlation between internal tissue (skeletal muscle and tail clip samples) and keratin (nail samples), (2) the influence of ecological factors (turtle size and waterbody/sampling site) on THg concentrations, and (3) whether THg concentrations were high enough to pose a risk to human consumers. The mean (±SE) THg concentrations of muscle and nail were 1.16 ± 0.08 μg/g dry weight and 4.21 ± 0.24 μg/g dry weight, respectively, and THg concentrations were highly dependent on the sampling site. The THg concentrations of nails were correlated with muscle concentrations (R2 = 0.56, p < 0.001). The effect of body size on THg concentrations varied by sampling site, indicating that size is not a good predictor of Hg concentration across sites. Finally, THg concentrations in M. temminckii of eastern Texas were high enough to pose a potential risk to human health based on US Environmental Protection Agency dietary guidelines. Environ Toxicol Chem 2024;43:1903-1913. © 2024 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

Macrochelys temminckii(鳄鱼鳄龟)是美国东南部特有的一种水龟,2021年被建议列入《濒危物种法案》。在本研究中,我们分析了从美国得克萨斯州东部 14 个水体中采样的 93 只鳄龟骨骼肌、尾夹和指甲组织中的总汞浓度(THg)。我们的目标是评估:(1)内部组织(骨骼肌和尾夹样本)与角蛋白(指甲样本)之间的相关程度;(2)生态因素(龟的大小和水体/采样地点)对总汞浓度的影响;(3)总汞浓度是否高到足以对人类消费者构成风险。肌肉和指甲的三卤甲烷平均浓度(±SE)分别为 1.16 ± 0.08 μg/g 干重和 4.21 ± 0.24 μg/g 干重,三卤甲烷浓度与采样地点有很大关系。指甲中的四氢大麻酚浓度与肌肉中的四氢大麻酚浓度相关(R2 = 0.56,p<0.05)。
{"title":"Intraspecific Variation in Mercury Contamination of Alligator Snapping Turtles (Macrochelys temminckii).","authors":"David Rosenbaum, Carmen G Montaña, Yanli Zhang, Matthew M Chumchal, Daniel Saenz, Christopher M Schalk","doi":"10.1002/etc.5888","DOIUrl":"10.1002/etc.5888","url":null,"abstract":"<p><p>Macrochelys temminckii (alligator snapping turtle) is an aquatic turtle endemic to the southeastern United States that was proposed for listing under the Endangered Species Act in 2021. In the present study we analyzed total mercury (THg) concentrations in skeletal muscle, tail clips, and nail tissue of 93 M. temminckii sampled from 14 waterbodies in eastern Texas (USA). Our objectives were to assess (1) the degree of correlation between internal tissue (skeletal muscle and tail clip samples) and keratin (nail samples), (2) the influence of ecological factors (turtle size and waterbody/sampling site) on THg concentrations, and (3) whether THg concentrations were high enough to pose a risk to human consumers. The mean (±SE) THg concentrations of muscle and nail were 1.16 ± 0.08 μg/g dry weight and 4.21 ± 0.24 μg/g dry weight, respectively, and THg concentrations were highly dependent on the sampling site. The THg concentrations of nails were correlated with muscle concentrations (R<sup>2</sup> = 0.56, p < 0.001). The effect of body size on THg concentrations varied by sampling site, indicating that size is not a good predictor of Hg concentration across sites. Finally, THg concentrations in M. temminckii of eastern Texas were high enough to pose a potential risk to human health based on US Environmental Protection Agency dietary guidelines. Environ Toxicol Chem 2024;43:1903-1913. © 2024 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.</p>","PeriodicalId":11793,"journal":{"name":"Environmental Toxicology and Chemistry","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141157542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Importance of Including Variable Exposure Concentrations When Assessing Toxicity of Sediment-Associated Pharmaceuticals to an Amphipod. 在评估沉积物相关药物对片脚类动物的毒性时纳入不同暴露浓度的重要性
IF 3.6 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-08-01 Epub Date: 2024-05-28 DOI: 10.1002/etc.5894
Sara Nicoline Grønlund, Casper D Læssøe, Nina Cedergreen, Henriette Selck

Pharmaceuticals have been classified as an environmental concern due to their increasing consumption globally and potential environmental impact. We examined the toxicity of sediment-associated diclofenac and citalopram administered as both single compounds and in a mixture to the sediment-living amphipod Corophium volutator. This laboratory-based study addressed the following research questions: (1) What is the toxicity of sediment-associated diclofenac and citalopram to C. volutator? (2) Can the mixture effect be described with either of the two mixture models: concentration addition (CA) or independent action (IA)? (3) What is the importance of the choice of (i) exposure measure (start concentration, time-weighted average [TWA], full exposure profile) and (ii) effect model (concentration-response vs. the toxicokinetic-toxicodynamic model general unified threshold model for survival in its reduced form [GUTS-RED]) for the derived effect concentration values? Diclofenac was more toxic than citalopram to C. volutator as a single compound (10-day exposure). Diclofenac exposure to C. volutator provided median lethal concentrations (LC50s) within the same range (11 µg g-1 dry wt sediment) using concentration-response based on TWA and both GUTS-RED models. However, concentration-response based on measured start concentrations provided an approximately 90% higher LC50 (21.6 ± 2.0 µg g-1 dry wt sediment). For citalopram, concentration-response parameters were similar regardless of model or concentration used (LC50 85-97 µg g-1 dry wt sediment), however, GUTS-RED with the assumption of individual tolerance resulted in a lower LC50 (64.9 [55.3-74.8] µg g-1 dry wt sediment). The mixture of diclofenac and citalopram followed the CA quite closely, whereas the result was synergistic when using the IA prediction. In summary, concentration-response based on TWA and GUTS-RED provided similar and reasonably good fits compared to the data set. The implications are that GUTS-RED will provide a more flexible model, which, in principle, can extend beyond the experimental period and make predictions based on variable exposure profiles (toxicity at different time frames and at different variable exposure scenarios) compared to concentration-response, which provides contaminant toxicity at one point in time. Environ Toxicol Chem 2024;43:1767-1777. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

由于药品在全球的消费量不断增加,并可能对环境造成影响,因此已被列为环境问题。我们研究了沉积物中的双氯芬酸和西酞普兰对生活在沉积物中的片脚类动物 Corophium volutator 的毒性。这项基于实验室的研究探讨了以下研究问题:(1)沉积物中的双氯芬酸和西酞普兰对卷尾藻有何毒性?(2) 是否可以用两种混合物模型中的一种来描述混合物效应:浓度添加模型(CA)或独立作用模型(IA)?(3) 选择(i)暴露量(起始浓度、时间加权平均值[TWA]、全暴露剖面)和(ii)效应模型(浓度-反应模型与毒物动力学-毒效学模型一般生存统一阈值模型的简化形式[GUTS-RED])对得出的效应浓度值有什么重要意义?作为单一化合物,双氯芬酸比西酞普兰对伏地龙的毒性更大(暴露 10 天)。使用基于 TWA 和 GUTS-RED 模型的浓度反应,双氯芬酸暴露于 C. volutator 的中位致死浓度 (LC50s) 在相同范围内(11 µg g-1 干重沉积物)。然而,基于测量的起始浓度的浓度响应提供的 LC50 高出约 90% (21.6 ± 2.0 µg g-1 干重沉积物)。对于西酞普兰,无论使用何种模型或浓度,其浓度-反应参数都相似(半数致死浓度为 85-97 µg g-1 干重沉积物),但是,假设个体耐受性的 GUTS-RED 模型得出的半数致死浓度较低(64.9 [55.3-74.8] µg g-1 干重沉积物)。双氯芬酸和西酞普兰的混合物与 CA 非常接近,而使用 IA 预测的结果是协同作用。总之,与数据集相比,基于 TWA 和 GUTS-RED 的浓度反应提供了相似且相当好的拟合。这意味着 GUTS-RED 将提供一个更灵活的模型,与提供污染物在一个时间点的毒性的浓度反应相比,该模型原则上可以延伸到实验期之后,并根据不同的暴露概况(不同时间段和不同暴露情景下的毒性)进行预测。环境毒物化学 2024;00:1-11。© 2024 作者。环境毒理学与化学》由 Wiley Periodicals LLC 代表 SETAC 出版。
{"title":"The Importance of Including Variable Exposure Concentrations When Assessing Toxicity of Sediment-Associated Pharmaceuticals to an Amphipod.","authors":"Sara Nicoline Grønlund, Casper D Læssøe, Nina Cedergreen, Henriette Selck","doi":"10.1002/etc.5894","DOIUrl":"10.1002/etc.5894","url":null,"abstract":"<p><p>Pharmaceuticals have been classified as an environmental concern due to their increasing consumption globally and potential environmental impact. We examined the toxicity of sediment-associated diclofenac and citalopram administered as both single compounds and in a mixture to the sediment-living amphipod Corophium volutator. This laboratory-based study addressed the following research questions: (1) What is the toxicity of sediment-associated diclofenac and citalopram to C. volutator? (2) Can the mixture effect be described with either of the two mixture models: concentration addition (CA) or independent action (IA)? (3) What is the importance of the choice of (i) exposure measure (start concentration, time-weighted average [TWA], full exposure profile) and (ii) effect model (concentration-response vs. the toxicokinetic-toxicodynamic model general unified threshold model for survival in its reduced form [GUTS-RED]) for the derived effect concentration values? Diclofenac was more toxic than citalopram to C. volutator as a single compound (10-day exposure). Diclofenac exposure to C. volutator provided median lethal concentrations (LC50s) within the same range (11 µg g<sup>-1</sup> dry wt sediment) using concentration-response based on TWA and both GUTS-RED models. However, concentration-response based on measured start concentrations provided an approximately 90% higher LC50 (21.6 ± 2.0 µg g<sup>-1</sup> dry wt sediment). For citalopram, concentration-response parameters were similar regardless of model or concentration used (LC50 85-97 µg g<sup>-1</sup> dry wt sediment), however, GUTS-RED with the assumption of individual tolerance resulted in a lower LC50 (64.9 [55.3-74.8] µg g<sup>-1</sup> dry wt sediment). The mixture of diclofenac and citalopram followed the CA quite closely, whereas the result was synergistic when using the IA prediction. In summary, concentration-response based on TWA and GUTS-RED provided similar and reasonably good fits compared to the data set. The implications are that GUTS-RED will provide a more flexible model, which, in principle, can extend beyond the experimental period and make predictions based on variable exposure profiles (toxicity at different time frames and at different variable exposure scenarios) compared to concentration-response, which provides contaminant toxicity at one point in time. Environ Toxicol Chem 2024;43:1767-1777. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.</p>","PeriodicalId":11793,"journal":{"name":"Environmental Toxicology and Chemistry","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141157564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Environmental Toxicology and Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1