Abel Albiach-Delgado, Alejandro Pinilla-González, Mari Merce Cascant-Vilaplana, Álvaro Solaz-García, Laura Torrejón-Rodríguez, Inmaculada Lara-Cantón, Anna Parra-Llorca, María Cernada, María Gormaz, África Pertierra, Caridad Tapia, Martin Iriondo, Marta Aguar, Julia Kuligowski, Máximo Vento
{"title":"The effect of inhaled nitric oxide treatment on biomarkers of oxidative/nitrosative damage to proteins and DNA/RNA.","authors":"Abel Albiach-Delgado, Alejandro Pinilla-González, Mari Merce Cascant-Vilaplana, Álvaro Solaz-García, Laura Torrejón-Rodríguez, Inmaculada Lara-Cantón, Anna Parra-Llorca, María Cernada, María Gormaz, África Pertierra, Caridad Tapia, Martin Iriondo, Marta Aguar, Julia Kuligowski, Máximo Vento","doi":"10.1016/j.freeradbiomed.2025.01.020","DOIUrl":null,"url":null,"abstract":"<p><p>Inhaled nitric oxide (iNO) is a selective pulmonary vasodilator that is used as a treatment for persistent pulmonary hypertension in neonates (PPHN) with hypoxic respiratory failure. The generation of reactive oxygen and nitrogen species might induce oxidative/nitrosative damage to multiple organs. There is an increasing scientific and clinical interest in the determination of specific biomarkers to measure the degree of oxidative/nitrosative stress in non-invasively collected biofluids. A method for the simultaneous detection of a panel of oxidative and nitrosative stress-related biomarkers for quantifying damage to proteins and DNA/RNA in 20 μL of infant urine samples based on reversed-phase ultra-performance liquid chromatography coupled to tandem mass spectrometry operating in positive electrospray ionization mode (ESI<sup>+</sup>) was optimized and validated. Infant urine samples from two different studies were analyzed: (i) term and preterm infants from a nutrition study (Nutrishield, N = 50) and (ii) infants with respiratory insufficiency, including infants with PPHN (N = 16) that required iNO treatment and a control group without treatment (N = 14). Eleven of 14 metabolites were detected in >50 % of infant urine samples, with ranges between 0.008 and 1400 μmol/g creatinine. When comparing across groups, differences in samples collected after iNO treatment in comparison to the rest of the groups were found for m-tyrosine (m-Tyr and m-Tyr/Phe) and ortho-tyrosine (o-Tyr and o-Tyr/Phe) (p-values <0.001, Wilcoxon rank-sum test). Positive linear relationships were found with NO exposure corrected by infant weight for m-Tyr, m-Tyr/Phe, o-Tyr, o-Tyr/Phe and 3-nitrotyrosine. Future studies will focus on the evaluation of the impact of iNO treatment on health and oxidative/nitrosative stress-related morbidities associated with prematurity.</p>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":"228 ","pages":"350-359"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.freeradbiomed.2025.01.020","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Inhaled nitric oxide (iNO) is a selective pulmonary vasodilator that is used as a treatment for persistent pulmonary hypertension in neonates (PPHN) with hypoxic respiratory failure. The generation of reactive oxygen and nitrogen species might induce oxidative/nitrosative damage to multiple organs. There is an increasing scientific and clinical interest in the determination of specific biomarkers to measure the degree of oxidative/nitrosative stress in non-invasively collected biofluids. A method for the simultaneous detection of a panel of oxidative and nitrosative stress-related biomarkers for quantifying damage to proteins and DNA/RNA in 20 μL of infant urine samples based on reversed-phase ultra-performance liquid chromatography coupled to tandem mass spectrometry operating in positive electrospray ionization mode (ESI+) was optimized and validated. Infant urine samples from two different studies were analyzed: (i) term and preterm infants from a nutrition study (Nutrishield, N = 50) and (ii) infants with respiratory insufficiency, including infants with PPHN (N = 16) that required iNO treatment and a control group without treatment (N = 14). Eleven of 14 metabolites were detected in >50 % of infant urine samples, with ranges between 0.008 and 1400 μmol/g creatinine. When comparing across groups, differences in samples collected after iNO treatment in comparison to the rest of the groups were found for m-tyrosine (m-Tyr and m-Tyr/Phe) and ortho-tyrosine (o-Tyr and o-Tyr/Phe) (p-values <0.001, Wilcoxon rank-sum test). Positive linear relationships were found with NO exposure corrected by infant weight for m-Tyr, m-Tyr/Phe, o-Tyr, o-Tyr/Phe and 3-nitrotyrosine. Future studies will focus on the evaluation of the impact of iNO treatment on health and oxidative/nitrosative stress-related morbidities associated with prematurity.
期刊介绍:
Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.