{"title":"Cognitive component of auditory attention to natural speech events.","authors":"Nhan Duc Thanh Nguyen, Kaare Mikkelsen, Preben Kidmose","doi":"10.3389/fnhum.2024.1460139","DOIUrl":null,"url":null,"abstract":"<p><p>The recent progress in auditory attention decoding (AAD) methods is based on algorithms that find a relation between the audio envelope and the neurophysiological response. The most popular approach is based on the reconstruction of the audio envelope from electroencephalogram (EEG) signals. These methods are primarily based on the exogenous response driven by the physical characteristics of the stimuli. In this study, we specifically investigate higher-level cognitive responses influenced by auditory attention to natural speech events. We designed a series of four experimental paradigms with increasing levels of realism: a word category oddball paradigm, a word category oddball paradigm with competing speakers, and competing speech streams with and without specific targets. We recorded EEG data using 32 scalp electrodes, as well as 12 in-ear electrodes (ear-EEG) from 24 participants. By using natural speech events and cognitive tasks, a cognitive event-related potential (ERP) component, which we believe is related to the well-known P3b component, was observed at parietal electrode sites with a latency of ~625 ms. Importantly, the component decreases in strength but is still significantly observable in increasingly realistic paradigms of multi-talker environments. We also show that the component can be observed in the in-ear EEG signals by using spatial filtering. We believe that the P3b-like cognitive component modulated by auditory attention can contribute to improving auditory attention decoding from electrophysiological recordings.</p>","PeriodicalId":12536,"journal":{"name":"Frontiers in Human Neuroscience","volume":"18 ","pages":"1460139"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743694/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Human Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnhum.2024.1460139","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The recent progress in auditory attention decoding (AAD) methods is based on algorithms that find a relation between the audio envelope and the neurophysiological response. The most popular approach is based on the reconstruction of the audio envelope from electroencephalogram (EEG) signals. These methods are primarily based on the exogenous response driven by the physical characteristics of the stimuli. In this study, we specifically investigate higher-level cognitive responses influenced by auditory attention to natural speech events. We designed a series of four experimental paradigms with increasing levels of realism: a word category oddball paradigm, a word category oddball paradigm with competing speakers, and competing speech streams with and without specific targets. We recorded EEG data using 32 scalp electrodes, as well as 12 in-ear electrodes (ear-EEG) from 24 participants. By using natural speech events and cognitive tasks, a cognitive event-related potential (ERP) component, which we believe is related to the well-known P3b component, was observed at parietal electrode sites with a latency of ~625 ms. Importantly, the component decreases in strength but is still significantly observable in increasingly realistic paradigms of multi-talker environments. We also show that the component can be observed in the in-ear EEG signals by using spatial filtering. We believe that the P3b-like cognitive component modulated by auditory attention can contribute to improving auditory attention decoding from electrophysiological recordings.
期刊介绍:
Frontiers in Human Neuroscience is a first-tier electronic journal devoted to understanding the brain mechanisms supporting cognitive and social behavior in humans, and how these mechanisms might be altered in disease states. The last 25 years have seen an explosive growth in both the methods and the theoretical constructs available to study the human brain. Advances in electrophysiological, neuroimaging, neuropsychological, psychophysical, neuropharmacological and computational approaches have provided key insights into the mechanisms of a broad range of human behaviors in both health and disease. Work in human neuroscience ranges from the cognitive domain, including areas such as memory, attention, language and perception to the social domain, with this last subject addressing topics, such as interpersonal interactions, social discourse and emotional regulation. How these processes unfold during development, mature in adulthood and often decline in aging, and how they are altered in a host of developmental, neurological and psychiatric disorders, has become increasingly amenable to human neuroscience research approaches. Work in human neuroscience has influenced many areas of inquiry ranging from social and cognitive psychology to economics, law and public policy. Accordingly, our journal will provide a forum for human research spanning all areas of human cognitive, social, developmental and translational neuroscience using any research approach.