Phylogenetic signal in primate tooth enamel proteins and its relevance for paleoproteomics.

IF 3.2 2区 生物学 Q2 EVOLUTIONARY BIOLOGY Genome Biology and Evolution Pub Date : 2025-01-21 DOI:10.1093/gbe/evaf007
Ricardo Fong-Zazueta, Johanna Krueger, David M Alba, Xènia Aymerich, Robin M D Beck, Enrico Cappellini, Guillermo Carrillo-Martin, Omar Cirilli, Nathan Clark, Omar E Cornejo, Kyle Kai-How Farh, Luis Ferrández-Peral, David Juan, Joanna L Kelley, Lukas F K Kuderna, Jordan Little, Joseph D Orkin, Ryan S Paterson, Harvinder Pawar, Tomas Marques-Bonet, Esther Lizano
{"title":"Phylogenetic signal in primate tooth enamel proteins and its relevance for paleoproteomics.","authors":"Ricardo Fong-Zazueta, Johanna Krueger, David M Alba, Xènia Aymerich, Robin M D Beck, Enrico Cappellini, Guillermo Carrillo-Martin, Omar Cirilli, Nathan Clark, Omar E Cornejo, Kyle Kai-How Farh, Luis Ferrández-Peral, David Juan, Joanna L Kelley, Lukas F K Kuderna, Jordan Little, Joseph D Orkin, Ryan S Paterson, Harvinder Pawar, Tomas Marques-Bonet, Esther Lizano","doi":"10.1093/gbe/evaf007","DOIUrl":null,"url":null,"abstract":"<p><p>Ancient tooth enamel, and to some extent dentin and bone, contain characteristic peptides that persist for long periods of time. In particular, peptides from the enamel proteome (enamelome) have been used to reconstruct the phylogenetic relationships of fossil taxa. However, the enamelome is based on only about 10 genes, whose protein products undergo fragmentation in vivo and post mortem. This raises the question as to whether the enamelome alone provides enough information for reliable phylogenetic inference. We address these considerations on a selection of enamel-associated proteins that has been computationally predicted from genomic data from 232 primate species. We created multiple sequence alignments for each protein and estimated the evolutionary rate for each site. We examined which sites overlap with the parts of the protein sequences that are typically isolated from fossils. Based on this, we simulated ancient data with different degrees of sequence fragmentation, followed by phylogenetic analysis. We compared these trees to a reference species tree. Up to a degree of fragmentation that is similar to that of fossil samples from 1-2 million years ago, the phylogenetic placements of most nodes at family level are consistent with the reference species tree. We tested phylogenetic analysis on combinations of different enamel proteins and found that the composition of the proteome can influence deep splits in the phylogeny. With our methods, we provide guidance for researchers on how to evaluate the potential of paleoproteomics for phylogenetic studies before sampling valuable ancient specimens.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evaf007","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ancient tooth enamel, and to some extent dentin and bone, contain characteristic peptides that persist for long periods of time. In particular, peptides from the enamel proteome (enamelome) have been used to reconstruct the phylogenetic relationships of fossil taxa. However, the enamelome is based on only about 10 genes, whose protein products undergo fragmentation in vivo and post mortem. This raises the question as to whether the enamelome alone provides enough information for reliable phylogenetic inference. We address these considerations on a selection of enamel-associated proteins that has been computationally predicted from genomic data from 232 primate species. We created multiple sequence alignments for each protein and estimated the evolutionary rate for each site. We examined which sites overlap with the parts of the protein sequences that are typically isolated from fossils. Based on this, we simulated ancient data with different degrees of sequence fragmentation, followed by phylogenetic analysis. We compared these trees to a reference species tree. Up to a degree of fragmentation that is similar to that of fossil samples from 1-2 million years ago, the phylogenetic placements of most nodes at family level are consistent with the reference species tree. We tested phylogenetic analysis on combinations of different enamel proteins and found that the composition of the proteome can influence deep splits in the phylogeny. With our methods, we provide guidance for researchers on how to evaluate the potential of paleoproteomics for phylogenetic studies before sampling valuable ancient specimens.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
灵长类牙釉质蛋白的系统发育信号及其与古蛋白质组学的相关性。
古代的牙釉质,在某种程度上还有牙本质和骨头,都含有能持续很长时间的特征肽。特别是,来自釉质蛋白质组(搪瓷组)的肽已被用于重建化石分类群的系统发育关系。然而,其蛋白产物在体内和死后都会发生断裂,仅由大约10个基因组成。这就提出了一个问题,即单靠漆质体是否提供了足够的信息来进行可靠的系统发育推断。我们从232种灵长类动物的基因组数据中计算预测了搪瓷相关蛋白的选择,以解决这些问题。我们为每个蛋白质创建了多个序列比对,并估计了每个位点的进化速率。我们检查了哪些位点与通常从化石中分离出来的蛋白质序列部分重叠。在此基础上,我们模拟了不同程度序列破碎的古代数据,并进行了系统发育分析。我们将这些树与参考树种树进行了比较。在与1-2百万年前的化石样本相似的程度上,大多数节点在科水平上的系统发育位置与参考物种树一致。我们对不同的釉质蛋白组合进行了系统发育分析,发现蛋白质组的组成可以影响系统发育的深度分裂。通过我们的方法,我们为研究人员在取样有价值的古代标本之前如何评估古蛋白质组学在系统发育研究中的潜力提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genome Biology and Evolution
Genome Biology and Evolution EVOLUTIONARY BIOLOGY-GENETICS & HEREDITY
CiteScore
5.80
自引率
6.10%
发文量
169
审稿时长
1 months
期刊介绍: About the journal Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.
期刊最新文献
Massive gene loss in the fungus Sporothrix epigloea accompanied a shift to life in a glucuronoxylomannan-based gel matrix. Plasmodium falciparum CyRPA glycan binding does not explain adaptation to humans. Assembly and Annotation of the Tetraploid Salsola tragus (Russian thistle) Genome. Functional carbohydrate-active enzymes acquired by horizontal gene transfer from plants in the whitefly Bemisia tabaci. Convergent evolution and predictability of gene copy numbers associated with diets in mammals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1