Kaitlin A Freeberg, Narissa P McCarty, Michel Chonchol, Douglas R Seals, Daniel H Craighead
{"title":"Oxidative stress suppresses internal carotid artery dilation to hypercapnia in healthy older adults.","authors":"Kaitlin A Freeberg, Narissa P McCarty, Michel Chonchol, Douglas R Seals, Daniel H Craighead","doi":"10.1152/japplphysiol.00322.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebrovascular disease and dementia risk increases with age, and lifetime risk is greater in women. Cerebrovascular dysfunction likely precedes cerebrovascular disease and dementia but the mechanisms are incompletely understood. We hypothesized that oxidative stress mediates cerebrovascular dysfunction with human aging. Internal carotid artery dilation (ICA<sub>CO2</sub> dilation) and middle cerebral artery cerebrovascular reactivity (MCA CVR<sub>CO2</sub>) in response to hypercapnia (5% CO<sub>2</sub>) were measured in 20 young [10 F/10 M; age 23 ± 3 yr (means ± SD)] and 21 older (11 F/10 M; age 69 ± 9 yr) adults during intravenous infusions of saline (control) and vitamin C (acutely reduced oxidative stress condition). ICA<sub>CO2</sub> dilation increased in response to vitamin C infusion in older adults (saline = 4.3 ± 2.4%; vitamin C = 6.7 ± 3.3%) but was unchanged in young adults (saline = 6.1 ± 2.7%; vitamin C = 5.5 ± 1.9%) (group × condition: <i>P</i> = 0.004). MCA CVR<sub>CO2</sub> was not different in response to vitamin C in either group (group × condition: <i>P</i> = 0.341). However, when separated by sex, older female participants exhibited increased MCA CVR<sub>CO2</sub> with vitamin C (saline = 0.85 ± 0.79 cm/s/mmHg; vitamin C = 1.33 ± 1.01 cm/s/mmHg) compared with older male participants (saline = 1.21 ± 0.57 cm/s/mmHg; vitamin C = 0.99 ± 0.47 cm/s/mmHg) (sex × condition: <i>P</i> = 0.011). Oxidative stress selectively impairs cerebrovascular function in older adults in an artery- and sex-specific manner.<b>NEW & NOTEWORTHY</b> This study is the first to report oxidative stress-mediated suppression of cerebrovascular reactivity to hypercapnia in the internal carotid artery in older compared with young adults. Overall, these in vivo findings identify oxidative stress as an important pathophysiological contributor to cerebrovascular aging in humans, highlighting the need to identify novel interventions that can reduce oxidative stress in the aging population.</p>","PeriodicalId":15160,"journal":{"name":"Journal of applied physiology","volume":" ","pages":"536-545"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/japplphysiol.00322.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cerebrovascular disease and dementia risk increases with age, and lifetime risk is greater in women. Cerebrovascular dysfunction likely precedes cerebrovascular disease and dementia but the mechanisms are incompletely understood. We hypothesized that oxidative stress mediates cerebrovascular dysfunction with human aging. Internal carotid artery dilation (ICACO2 dilation) and middle cerebral artery cerebrovascular reactivity (MCA CVRCO2) in response to hypercapnia (5% CO2) were measured in 20 young [10 F/10 M; age 23 ± 3 yr (means ± SD)] and 21 older (11 F/10 M; age 69 ± 9 yr) adults during intravenous infusions of saline (control) and vitamin C (acutely reduced oxidative stress condition). ICACO2 dilation increased in response to vitamin C infusion in older adults (saline = 4.3 ± 2.4%; vitamin C = 6.7 ± 3.3%) but was unchanged in young adults (saline = 6.1 ± 2.7%; vitamin C = 5.5 ± 1.9%) (group × condition: P = 0.004). MCA CVRCO2 was not different in response to vitamin C in either group (group × condition: P = 0.341). However, when separated by sex, older female participants exhibited increased MCA CVRCO2 with vitamin C (saline = 0.85 ± 0.79 cm/s/mmHg; vitamin C = 1.33 ± 1.01 cm/s/mmHg) compared with older male participants (saline = 1.21 ± 0.57 cm/s/mmHg; vitamin C = 0.99 ± 0.47 cm/s/mmHg) (sex × condition: P = 0.011). Oxidative stress selectively impairs cerebrovascular function in older adults in an artery- and sex-specific manner.NEW & NOTEWORTHY This study is the first to report oxidative stress-mediated suppression of cerebrovascular reactivity to hypercapnia in the internal carotid artery in older compared with young adults. Overall, these in vivo findings identify oxidative stress as an important pathophysiological contributor to cerebrovascular aging in humans, highlighting the need to identify novel interventions that can reduce oxidative stress in the aging population.
期刊介绍:
The Journal of Applied Physiology publishes the highest quality original research and reviews that examine novel adaptive and integrative physiological mechanisms in humans and animals that advance the field. The journal encourages the submission of manuscripts that examine the acute and adaptive responses of various organs, tissues, cells and/or molecular pathways to environmental, physiological and/or pathophysiological stressors. As an applied physiology journal, topics of interest are not limited to a particular organ system. The journal, therefore, considers a wide array of integrative and translational research topics examining the mechanisms involved in disease processes and mitigation strategies, as well as the promotion of health and well-being throughout the lifespan. Priority is given to manuscripts that provide mechanistic insight deemed to exert an impact on the field.