{"title":"Reprogramming of Fatty Acid Metabolism in Acute Leukemia","authors":"Judith Sokei, Joice Kanefsky, Stephen M. Sykes","doi":"10.1002/jcp.70000","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Fatty acids are essential biomolecules that support several cellular processes, such as membrane structures, energy storage and production, as well as signal transduction. Accordingly, changes in fatty acid metabolism can have a significant impact on cell behavior, such as growth, survival, proliferation, differentiation, and motility. Therefore, it is not surprising that many aspects of fatty acid metabolism are frequently dysregulated in human cancer, including in highly aggressive blood cancers such as acute leukemia. The aims of this review are to summarize the aspects of fatty acid metabolism that are specifically coopted in acute leukemia as well as current preclinical strategies for targeting fatty acid metabolism in these cancers.</p></div>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"240 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcp.70000","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fatty acids are essential biomolecules that support several cellular processes, such as membrane structures, energy storage and production, as well as signal transduction. Accordingly, changes in fatty acid metabolism can have a significant impact on cell behavior, such as growth, survival, proliferation, differentiation, and motility. Therefore, it is not surprising that many aspects of fatty acid metabolism are frequently dysregulated in human cancer, including in highly aggressive blood cancers such as acute leukemia. The aims of this review are to summarize the aspects of fatty acid metabolism that are specifically coopted in acute leukemia as well as current preclinical strategies for targeting fatty acid metabolism in these cancers.
期刊介绍:
The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.