{"title":"Terahertz conductivity of two-dimensional materials: a review.","authors":"Shuva Mitra, Laleh Avazpour, Irena Knezevic","doi":"10.1088/1361-648X/adab6a","DOIUrl":null,"url":null,"abstract":"<p><p>Two-dimensional (2D) van der Waals materials are shaping the landscape of next-generation devices, offering significant technological value thanks to their unique, tunable, and layer-dependent electronic and optoelectronic properties. Time-domain spectroscopic techniques at terahertz (THz) frequencies offer noninvasive, contact-free methods for characterizing the dynamics of carriers in 2D materials. They also pave the path toward the applications of 2D materials in detection, imaging, manufacturing, and communication within the increasingly important THz frequency range. In this paper, we overview the synthesis of 2D materials and the prominent THz spectroscopy techniques: THz time-domain spectroscopy (THz-TDS), optical pump THz probe (OPTP) technique, and optical pump--probe (OPP) THz spectroscopy. Through a coalescence of experimental findings, numerical simulation, and theoretical analysis, we present the current understanding of the rich ultrafast physics of technologically significant 2D materials: graphene, transition metal dichalcogenides, MXenes, perovskites, topological 2D materials, and 2D heterostructures. Finally, we offer a perspective on the role of THz characterization in guiding future research and in the quest for ideal 2D materials for new applications.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adab6a","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional (2D) van der Waals materials are shaping the landscape of next-generation devices, offering significant technological value thanks to their unique, tunable, and layer-dependent electronic and optoelectronic properties. Time-domain spectroscopic techniques at terahertz (THz) frequencies offer noninvasive, contact-free methods for characterizing the dynamics of carriers in 2D materials. They also pave the path toward the applications of 2D materials in detection, imaging, manufacturing, and communication within the increasingly important THz frequency range. In this paper, we overview the synthesis of 2D materials and the prominent THz spectroscopy techniques: THz time-domain spectroscopy (THz-TDS), optical pump THz probe (OPTP) technique, and optical pump--probe (OPP) THz spectroscopy. Through a coalescence of experimental findings, numerical simulation, and theoretical analysis, we present the current understanding of the rich ultrafast physics of technologically significant 2D materials: graphene, transition metal dichalcogenides, MXenes, perovskites, topological 2D materials, and 2D heterostructures. Finally, we offer a perspective on the role of THz characterization in guiding future research and in the quest for ideal 2D materials for new applications.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.