Fengyu Shi , Akmal Ergashev , Zhenyan Pan , Hongwei Sun , Lingming Kong , Yuepeng Jin , Tan Zhang , Zhu Liu , Haonan Xie , Jinhui Wang , Huiping Li , Yi Wang , Lifei Zheng , Jianliang Shen , Andreas Herrmann , Gang Chen , Hongru Kong
{"title":"Macrophage-mimicking nanotherapy for attenuation of acute pancreatitis","authors":"Fengyu Shi , Akmal Ergashev , Zhenyan Pan , Hongwei Sun , Lingming Kong , Yuepeng Jin , Tan Zhang , Zhu Liu , Haonan Xie , Jinhui Wang , Huiping Li , Yi Wang , Lifei Zheng , Jianliang Shen , Andreas Herrmann , Gang Chen , Hongru Kong","doi":"10.1016/j.mtbio.2024.101406","DOIUrl":null,"url":null,"abstract":"<div><div>Acute pancreatitis (AP) is a highly fatal pancreatic inflammation. In recent years, synthetic nanoparticles have been extensively developed as drug carriers to address the challenges of systemic adverse reactions and lack of specificity in drug delivery. However, systemically administered nanoparticle therapy is rapidly cleared from circulation by the mononuclear phagocyte system (MPS), leading to suboptimal drug concentrations in inflamed tissues and suboptimal pharmacokinetics. To address this challenge, we herein demonstrate a surface masking strategy that involves coating the surface of selenylated Poria cocos polysaccharide nanoparticles with a layer of macrophage plasma membrane to circumvent MPS sequestration, thereby enhancing the therapeutic efficacy of selenylated Poria cocos polysaccharide nanoparticles. Nanoparticles encapsulated with macrophage membranes can simulate the active homing efficacy of macrophages to inflamed lesions during AP, resulting in excessive infiltration of macrophages in pancreatic inflammation sites and prolonged tissue retention time. This technique converts non-adhesive lipid nanoparticles into bioadhesive nanoparticles, increasing local tissue accumulation under inflammatory conditions, including the pancreas and vulnerable lungs. The mechanism is related to targeting pro-inflammatory macrophages. In murine models of mild and severe AP, intravenous treatment with macrophage-mimicking nanoparticles effectively reduces systemic inflammation level and diminishes the recruitment of macrophages and neutrophils. Mechanistic studies elucidate that macrophage membrane-biomimetic selenylated Poria cocos polysaccharide nanoparticles primarily mitigate pancreatic inflammation by inhibiting the AKT/mTOR pathway to reverse autophagic flux impairment. This allows us to envision that the developed biomimetic nanotherapy approach could potentially serve as a novel strategy for pancreatic drug therapy.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"30 ","pages":"Article 101406"},"PeriodicalIF":8.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733200/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006424004678","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Acute pancreatitis (AP) is a highly fatal pancreatic inflammation. In recent years, synthetic nanoparticles have been extensively developed as drug carriers to address the challenges of systemic adverse reactions and lack of specificity in drug delivery. However, systemically administered nanoparticle therapy is rapidly cleared from circulation by the mononuclear phagocyte system (MPS), leading to suboptimal drug concentrations in inflamed tissues and suboptimal pharmacokinetics. To address this challenge, we herein demonstrate a surface masking strategy that involves coating the surface of selenylated Poria cocos polysaccharide nanoparticles with a layer of macrophage plasma membrane to circumvent MPS sequestration, thereby enhancing the therapeutic efficacy of selenylated Poria cocos polysaccharide nanoparticles. Nanoparticles encapsulated with macrophage membranes can simulate the active homing efficacy of macrophages to inflamed lesions during AP, resulting in excessive infiltration of macrophages in pancreatic inflammation sites and prolonged tissue retention time. This technique converts non-adhesive lipid nanoparticles into bioadhesive nanoparticles, increasing local tissue accumulation under inflammatory conditions, including the pancreas and vulnerable lungs. The mechanism is related to targeting pro-inflammatory macrophages. In murine models of mild and severe AP, intravenous treatment with macrophage-mimicking nanoparticles effectively reduces systemic inflammation level and diminishes the recruitment of macrophages and neutrophils. Mechanistic studies elucidate that macrophage membrane-biomimetic selenylated Poria cocos polysaccharide nanoparticles primarily mitigate pancreatic inflammation by inhibiting the AKT/mTOR pathway to reverse autophagic flux impairment. This allows us to envision that the developed biomimetic nanotherapy approach could potentially serve as a novel strategy for pancreatic drug therapy.
期刊介绍:
Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).