Linze Hong, Ke Xiao, Xiangyu Song, Liwei Lin, Wei Xu
{"title":"System-level modeling with temperature compensation for a CMOS-MEMS monolithic calorimetric flow sensing SoC.","authors":"Linze Hong, Ke Xiao, Xiangyu Song, Liwei Lin, Wei Xu","doi":"10.1038/s41378-024-00853-8","DOIUrl":null,"url":null,"abstract":"<p><p>We present a system-level model with an on-chip temperature compensation technique for a CMOS-MEMS monolithic calorimetric flow sensing SoC. The model encompasses mechanical, thermal, and electrical domains to facilitate the co-design of a MEMS sensor and CMOS interface circuits on the EDA platform. The compensation strategy is implemented on-chip with a variable temperature difference heating circuit. Results show that the linear programming for the low-temperature drift in the SoC output is characterized by a compensation resistor R<sub>c</sub> with a resistance value of 748.21 Ω and a temperature coefficient of resistance of 3.037 × 10<sup>-3</sup> °C<sup>-1</sup> at 25 °C. Experimental validation demonstrates that within an ambient temperature range of 0-50 °C and a flow range of 0-10 m/s, the temperature drift of the sensor is reduced to ±1.6%, as compared to ±8.9% observed in a counterpart with the constant temperature difference circuit. Therefore, this on-chip temperature-compensated CMOS-MEMS flow sensing SoC is promising for low-cost sensing applications such as respiratory monitoring and smart energy-efficient buildings.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"13"},"PeriodicalIF":7.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743593/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00853-8","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
We present a system-level model with an on-chip temperature compensation technique for a CMOS-MEMS monolithic calorimetric flow sensing SoC. The model encompasses mechanical, thermal, and electrical domains to facilitate the co-design of a MEMS sensor and CMOS interface circuits on the EDA platform. The compensation strategy is implemented on-chip with a variable temperature difference heating circuit. Results show that the linear programming for the low-temperature drift in the SoC output is characterized by a compensation resistor Rc with a resistance value of 748.21 Ω and a temperature coefficient of resistance of 3.037 × 10-3 °C-1 at 25 °C. Experimental validation demonstrates that within an ambient temperature range of 0-50 °C and a flow range of 0-10 m/s, the temperature drift of the sensor is reduced to ±1.6%, as compared to ±8.9% observed in a counterpart with the constant temperature difference circuit. Therefore, this on-chip temperature-compensated CMOS-MEMS flow sensing SoC is promising for low-cost sensing applications such as respiratory monitoring and smart energy-efficient buildings.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.