Physical Color Calibration of Digital Pathology Scanners for Robust Artificial Intelligence Assisted Cancer Diagnosis.

IF 7.1 1区 医学 Q1 PATHOLOGY Modern Pathology Pub Date : 2025-01-16 DOI:10.1016/j.modpat.2025.100715
Xiaoyi Ji, Richard Salmon, Nita Mulliqi, Umair Khan, Yinxi Wang, Anders Blilie, Henrik Olsson, Bodil Ginnerup Pedersen, Karina Dalsgaard Sørensen, Benedicte Parm Ulhøi, Svein R Kjosavik, Emilius A M Janssen, Mattias Rantalainen, Lars Egevad, Pekka Ruusuvuori, Martin Eklund, Kimmo Kartasalo
{"title":"Physical Color Calibration of Digital Pathology Scanners for Robust Artificial Intelligence Assisted Cancer Diagnosis.","authors":"Xiaoyi Ji, Richard Salmon, Nita Mulliqi, Umair Khan, Yinxi Wang, Anders Blilie, Henrik Olsson, Bodil Ginnerup Pedersen, Karina Dalsgaard Sørensen, Benedicte Parm Ulhøi, Svein R Kjosavik, Emilius A M Janssen, Mattias Rantalainen, Lars Egevad, Pekka Ruusuvuori, Martin Eklund, Kimmo Kartasalo","doi":"10.1016/j.modpat.2025.100715","DOIUrl":null,"url":null,"abstract":"<p><p>The potential of artificial intelligence (AI) in digital pathology is limited by technical inconsistencies in the production of whole slide images (WSIs). This causes degraded AI performance and poses a challenge for widespread clinical application, as fine-tuning algorithms for each site is impractical. Changes in the imaging workflow can also compromise diagnostic accuracy and patient safety. Physical color calibration of scanners, relying on a biomaterial-based calibrant slide and a spectrophotometric reference measurement, has been proposed for standardizing WSI appearance, but its impact on AI performance has not been investigated. We evaluated whether physical color calibration can enable robust AI performance. We trained fully supervised and foundation model based AI systems for detecting and Gleason grading prostate cancer using WSIs of prostate biopsies from the STHLM3 clinical trial (n=3,651) and evaluated their performance in three external cohorts (n=1,161) with and without calibration. With physical color calibration, the fully supervised system's concordance with pathologists' grading (Cohen's linearly weighted kappa) improved from 0.439 to 0.619 in the Stavanger University Hospital cohort (n=860), from 0.354 to 0.738 in the Karolinska University Hospital cohort (n=229), and from 0.423 to 0.452 in the Aarhus University Hospital cohort (n=72). The foundation model's concordance improved from 0.739 to 0.760 (Karolinska), from 0.424 to 0.459 (Aarhus) and from 0.547 to 0.670 (Stavanger). The study demonstrates that physical color calibration provides a potential solution to the variation introduced by different scanners, making AI-based cancer diagnostics more reliable and applicable in diverse clinical settings.</p>","PeriodicalId":18706,"journal":{"name":"Modern Pathology","volume":" ","pages":"100715"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.modpat.2025.100715","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The potential of artificial intelligence (AI) in digital pathology is limited by technical inconsistencies in the production of whole slide images (WSIs). This causes degraded AI performance and poses a challenge for widespread clinical application, as fine-tuning algorithms for each site is impractical. Changes in the imaging workflow can also compromise diagnostic accuracy and patient safety. Physical color calibration of scanners, relying on a biomaterial-based calibrant slide and a spectrophotometric reference measurement, has been proposed for standardizing WSI appearance, but its impact on AI performance has not been investigated. We evaluated whether physical color calibration can enable robust AI performance. We trained fully supervised and foundation model based AI systems for detecting and Gleason grading prostate cancer using WSIs of prostate biopsies from the STHLM3 clinical trial (n=3,651) and evaluated their performance in three external cohorts (n=1,161) with and without calibration. With physical color calibration, the fully supervised system's concordance with pathologists' grading (Cohen's linearly weighted kappa) improved from 0.439 to 0.619 in the Stavanger University Hospital cohort (n=860), from 0.354 to 0.738 in the Karolinska University Hospital cohort (n=229), and from 0.423 to 0.452 in the Aarhus University Hospital cohort (n=72). The foundation model's concordance improved from 0.739 to 0.760 (Karolinska), from 0.424 to 0.459 (Aarhus) and from 0.547 to 0.670 (Stavanger). The study demonstrates that physical color calibration provides a potential solution to the variation introduced by different scanners, making AI-based cancer diagnostics more reliable and applicable in diverse clinical settings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于鲁棒人工智能辅助癌症诊断的数字病理扫描仪物理颜色校准。
人工智能(AI)在数字病理学中的潜力受到全幻灯片图像(wsi)生产技术不一致性的限制。这导致人工智能性能下降,并对广泛的临床应用构成挑战,因为每个部位的微调算法是不切实际的。成像工作流程的变化也会影响诊断的准确性和患者的安全。基于基于生物材料的校准载玻片和分光光度参考测量的扫描仪的物理颜色校准已被提出用于标准化WSI外观,但其对AI性能的影响尚未研究。我们评估了物理颜色校准是否能够实现稳健的人工智能性能。我们训练了基于完全监督和基础模型的人工智能系统,使用来自STHLM3临床试验(n=3,651)的前列腺活检的wsi来检测前列腺癌和Gleason分级,并在三个外部队列(n=1,161)中评估了它们在有和没有校准的情况下的表现。通过物理颜色校准,完全监督系统与病理学家分级(Cohen线性加权kappa)的一致性在斯塔万格大学医院队列中(n=860)从0.439提高到0.619,在卡罗林斯卡大学医院队列中(n=229)从0.354提高到0.738,在奥胡斯大学医院队列中(n=72)从0.423提高到0.452。基础模型的一致性从0.739提高到0.760(卡罗林斯卡),从0.424提高到0.459(奥胡斯),从0.547提高到0.670(斯塔万格)。该研究表明,物理颜色校准为不同扫描仪带来的差异提供了一种潜在的解决方案,使基于人工智能的癌症诊断更加可靠,适用于各种临床环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Modern Pathology
Modern Pathology 医学-病理学
CiteScore
14.30
自引率
2.70%
发文量
174
审稿时长
18 days
期刊介绍: Modern Pathology, an international journal under the ownership of The United States & Canadian Academy of Pathology (USCAP), serves as an authoritative platform for publishing top-tier clinical and translational research studies in pathology. Original manuscripts are the primary focus of Modern Pathology, complemented by impactful editorials, reviews, and practice guidelines covering all facets of precision diagnostics in human pathology. The journal's scope includes advancements in molecular diagnostics and genomic classifications of diseases, breakthroughs in immune-oncology, computational science, applied bioinformatics, and digital pathology.
期刊最新文献
Frank Invasion in Tall Cell Carcinoma with Reversed Polarity of the Breast: Report of Two Cases. Claudin 18.2 Expression in 1,404 Digestive Tract Adenocarcinomas including 1,175 Colorectal Carcinomas: Distinct Colorectal Carcinoma Subtypes are Claudin 18.2 Positive. Physical Color Calibration of Digital Pathology Scanners for Robust Artificial Intelligence Assisted Cancer Diagnosis. Prediction of response to anti-HER2 therapy using a multigene assay. How Do I Diagnose Fibrolamellar Carcinoma?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1