Building electrode/electrolyte interphases in aqueous zinc batteries via self-polymerization of electrolyte additives.

IF 16.3 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES National Science Review Pub Date : 2024-11-11 eCollection Date: 2025-01-01 DOI:10.1093/nsr/nwae397
Yaheng Geng, Wenli Xin, Lei Zhang, Yu Han, Huiling Peng, Min Yang, Hui Zhang, Xilin Xiao, Junwei Li, Zichao Yan, Zhiqiang Zhu, Fangyi Cheng
{"title":"Building electrode/electrolyte interphases in aqueous zinc batteries via self-polymerization of electrolyte additives.","authors":"Yaheng Geng, Wenli Xin, Lei Zhang, Yu Han, Huiling Peng, Min Yang, Hui Zhang, Xilin Xiao, Junwei Li, Zichao Yan, Zhiqiang Zhu, Fangyi Cheng","doi":"10.1093/nsr/nwae397","DOIUrl":null,"url":null,"abstract":"<p><p>Aqueous zinc batteries offer promising prospects for large-scale energy storage, yet their application is limited by undesired side reactions at the electrode/electrolyte interface. Here, we report a universal approach for the <i>in situ</i> building of an electrode/electrolyte interphase (EEI) layer on both the cathode and the anode through the self-polymerization of electrolyte additives. In an exemplified Zn||V<sub>2</sub>O<sub>5</sub>·nH<sub>2</sub>O cell, we reveal that the glutamate additive undergoes radical-initiated electro-polymerization on the cathode and polycondensation on the anode, yielding polyglutamic acid-dominated EEI layers on both electrodes. These EEI layers effectively mitigate undesired interfacial side reactions while enhancing reaction kinetics, enabling Zn||V<sub>2</sub>O<sub>5</sub>·nH<sub>2</sub>O cells to achieve a high capacity of 387 mAh g<sup>-1</sup> at 0.2 A g<sup>-1</sup> and maintain >96.3% capacity retention after 1500 cycles at 1 A g<sup>-1</sup>. Moreover, this interphase-forming additive exhibits broad applicability to varied cathode materials, encompassing VS<sub>2</sub>, VS<sub>4</sub>, VO<sub>2</sub>, α-MnO<sub>2</sub>, β-MnO<sub>2</sub> and δ-MnO<sub>2</sub>. The methodology of utilizing self-polymerizable electrolyte additives to construct robust EEI layers opens a novel pathway in interphase engineering for electrode stabilization in aqueous batteries.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 1","pages":"nwae397"},"PeriodicalIF":16.3000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740509/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwae397","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous zinc batteries offer promising prospects for large-scale energy storage, yet their application is limited by undesired side reactions at the electrode/electrolyte interface. Here, we report a universal approach for the in situ building of an electrode/electrolyte interphase (EEI) layer on both the cathode and the anode through the self-polymerization of electrolyte additives. In an exemplified Zn||V2O5·nH2O cell, we reveal that the glutamate additive undergoes radical-initiated electro-polymerization on the cathode and polycondensation on the anode, yielding polyglutamic acid-dominated EEI layers on both electrodes. These EEI layers effectively mitigate undesired interfacial side reactions while enhancing reaction kinetics, enabling Zn||V2O5·nH2O cells to achieve a high capacity of 387 mAh g-1 at 0.2 A g-1 and maintain >96.3% capacity retention after 1500 cycles at 1 A g-1. Moreover, this interphase-forming additive exhibits broad applicability to varied cathode materials, encompassing VS2, VS4, VO2, α-MnO2, β-MnO2 and δ-MnO2. The methodology of utilizing self-polymerizable electrolyte additives to construct robust EEI layers opens a novel pathway in interphase engineering for electrode stabilization in aqueous batteries.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过电解质添加剂的自聚合建立锌水电池的电极/电解质界面。
水锌电池为大规模储能提供了良好的前景,但其应用受到电极/电解质界面不良副反应的限制。在这里,我们报告了一种通过电解质添加剂的自聚合在阴极和阳极上原位构建电极/电解质界面(EEI)层的通用方法。在Zn||V2O5·nH2O电池中,我们发现谷氨酸添加剂在阴极上发生自由基引发的电聚合,在阳极上发生缩聚,在两个电极上产生以谷氨酸为主的EEI层。这些EEI层有效地减轻了不想要的界面副反应,同时提高了反应动力学,使Zn||V2O5·nH2O电池在0.2 a g-1下达到387 mAh g-1的高容量,并在1 a g-1下循环1500次后保持>96.3%的容量保留率。此外,该相形成添加剂广泛适用于各种正极材料,包括VS2, VS4, VO2, α-MnO2, β-MnO2和δ-MnO2。利用自聚合电解质添加剂构建坚固的EEI层的方法为水电池电极稳定的相间工程开辟了一条新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
National Science Review
National Science Review MULTIDISCIPLINARY SCIENCES-
CiteScore
24.10
自引率
1.90%
发文量
249
审稿时长
13 weeks
期刊介绍: National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178. National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.
期刊最新文献
US-China cooperation and competition in science and technology. Cretaceous chewing-louse eggs on enantiornithine birds. Element cycling by environmental viruses. Reversible biomass aerogels with flame retardancy and smart elasticity. Core factor of NEXT complex, ZCCHC8, governs the silencing of LINE1 during spermatogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1