Extremely low lattice thermal conductivity in light-element solid materials.

IF 16.3 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES National Science Review Pub Date : 2024-09-28 eCollection Date: 2025-01-01 DOI:10.1093/nsr/nwae345
Ni Ma, Lu Liu, Runhua Wu, Juping Xu, Wen Yin, Kai Li, Wei Bai, Jiong Yang, Chong Xiao, Yi Xie
{"title":"Extremely low lattice thermal conductivity in light-element solid materials.","authors":"Ni Ma, Lu Liu, Runhua Wu, Juping Xu, Wen Yin, Kai Li, Wei Bai, Jiong Yang, Chong Xiao, Yi Xie","doi":"10.1093/nsr/nwae345","DOIUrl":null,"url":null,"abstract":"<p><p>Lattice thermal conductivity (<i>κ</i> <sub>l</sub>) is of great importance in basic sciences and in energy conversion applications. However, low-<i>κ</i> <sub>l</sub> crystalline materials have only been obtained from heavy elements, which typically exhibit poor stability and possible toxicity. Thus, low-<i>κ</i> <sub>l</sub> materials composed of light elements should be explored. Herein, light elements with hierarchical structures in a simple square-net lattice as well as a small discrepancy in atomic mass and radius exhibit low <i>κ</i> <sub>l</sub>. The hierarchical structure exhibits various chemical bonds and asymmetric geometry of building units, resulting in flat phonon branches and strong phonon-phonon interactions similar to those observed in heavy-element materials. These phenomena generate a large phonon anharmonicity, which is the prerequisite for achieving extremely low <i>κ</i> <sub>l</sub>. For example, KCu<sub>4</sub>Se<sub>3</sub> exhibits an extremely low <i>κ</i> <sub>l</sub> of 0.12 W/(m·K) at 573 K, which is lower than that of most heavy-element materials. These findings can reshape our fundamental understanding of thermal transport properties of materials and advance the design of low-<i>κ</i> <sub>l</sub> solids comprising light elements.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 1","pages":"nwae345"},"PeriodicalIF":16.3000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702647/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwae345","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Lattice thermal conductivity (κ l) is of great importance in basic sciences and in energy conversion applications. However, low-κ l crystalline materials have only been obtained from heavy elements, which typically exhibit poor stability and possible toxicity. Thus, low-κ l materials composed of light elements should be explored. Herein, light elements with hierarchical structures in a simple square-net lattice as well as a small discrepancy in atomic mass and radius exhibit low κ l. The hierarchical structure exhibits various chemical bonds and asymmetric geometry of building units, resulting in flat phonon branches and strong phonon-phonon interactions similar to those observed in heavy-element materials. These phenomena generate a large phonon anharmonicity, which is the prerequisite for achieving extremely low κ l. For example, KCu4Se3 exhibits an extremely low κ l of 0.12 W/(m·K) at 573 K, which is lower than that of most heavy-element materials. These findings can reshape our fundamental understanding of thermal transport properties of materials and advance the design of low-κ l solids comprising light elements.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在轻元素固体材料中晶格导热系数极低。
晶格导热系数(κ l)在基础科学和能量转换应用中具有重要意义。然而,低-κ 1晶体材料只能从重元素中获得,这通常表现出较差的稳定性和可能的毒性。因此,应探索由轻元素组成的低κ l材料。在这里,在简单的方网晶格中具有层次结构的轻元素以及原子质量和半径的小差异表现出低κ l。层次结构具有各种化学键和不对称的建筑单元几何形状,导致平坦的声子分支和强烈的声子-声子相互作用,类似于在重元素材料中观察到的。这些现象产生了很大的声子不谐性,这是实现极低κ l的先决条件,例如KCu4Se3在573 K时表现出极低的κ l,为0.12 W/(m·K),低于大多数重元素材料。这些发现可以重塑我们对材料热输运性质的基本理解,并推进含有轻元素的低κ 1固体的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
National Science Review
National Science Review MULTIDISCIPLINARY SCIENCES-
CiteScore
24.10
自引率
1.90%
发文量
249
审稿时长
13 weeks
期刊介绍: National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178. National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.
期刊最新文献
US-China cooperation and competition in science and technology. Cretaceous chewing-louse eggs on enantiornithine birds. Element cycling by environmental viruses. Reversible biomass aerogels with flame retardancy and smart elasticity. Core factor of NEXT complex, ZCCHC8, governs the silencing of LINE1 during spermatogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1