Insulator-donor electron wavefunction coupling in pseudo-bilayer organic solar cells achieving a certificated efficiency of 19.18.

IF 16.3 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES National Science Review Pub Date : 2024-10-30 eCollection Date: 2025-01-01 DOI:10.1093/nsr/nwae385
Jiangkai Sun, Ruijie Ma, Xue Yang, Xiaoyu Xie, Dongcheng Jiang, Yuan Meng, Yiyun Li, Fengzhe Cui, Mengfei Xiao, Kangning Zhang, Yu Chen, Xinxin Xia, Maojie Zhang, Xiaoyan Du, Long Ye, Haibo Ma, Kun Gao, Feng Chen, Gang Li, Xiaotao Hao, Hang Yin
{"title":"Insulator-donor electron wavefunction coupling in pseudo-bilayer organic solar cells achieving a certificated efficiency of 19.18.","authors":"Jiangkai Sun, Ruijie Ma, Xue Yang, Xiaoyu Xie, Dongcheng Jiang, Yuan Meng, Yiyun Li, Fengzhe Cui, Mengfei Xiao, Kangning Zhang, Yu Chen, Xinxin Xia, Maojie Zhang, Xiaoyan Du, Long Ye, Haibo Ma, Kun Gao, Feng Chen, Gang Li, Xiaotao Hao, Hang Yin","doi":"10.1093/nsr/nwae385","DOIUrl":null,"url":null,"abstract":"<p><p>The incorporation of polymeric insulators has led to notable achievements in the field of organic semiconductors. By altering the blending concentration, polymeric insulators exhibit extensive capabilities in regulating molecular configuration, film crystallinity, and mitigation of defect states. However, current research suggests that the improvement in such physical properties is primarily attributed to the enhancement of thin film morphology, an outcome that seems to be an inevitable consequence of incorporating insulators. Herein, we report a general and completely new effect of polymeric insulators in organic semiconductors: the insulator-donor electron wavefunction coupling effect. Such insulators can couple with donor polymers to reduce the energy barrier level and facilitate intramolecular electron transport. Besides the morphological effects, we observed that this coupling effect is another mechanism that can significantly enhance electron mobility (up to 100 times) through the incorporation of polymeric insulators in a series of donor systems. With this effect, we proposed a polymeric insulator blending approach to fabricate state-of-the-art pseudo-bilayer organic solar cells, and the PM6/L8-BO device exhibits a high efficiency of 19.50% (certificated 19.18%) with an improved interfacial electron transport property. This work not only offers a novel perspective on the quantum effect of polymeric insulators in organic semiconductors, but also presents a simple yet effective method for enhancing the performance of organic solar cells.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 1","pages":"nwae385"},"PeriodicalIF":16.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702652/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwae385","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The incorporation of polymeric insulators has led to notable achievements in the field of organic semiconductors. By altering the blending concentration, polymeric insulators exhibit extensive capabilities in regulating molecular configuration, film crystallinity, and mitigation of defect states. However, current research suggests that the improvement in such physical properties is primarily attributed to the enhancement of thin film morphology, an outcome that seems to be an inevitable consequence of incorporating insulators. Herein, we report a general and completely new effect of polymeric insulators in organic semiconductors: the insulator-donor electron wavefunction coupling effect. Such insulators can couple with donor polymers to reduce the energy barrier level and facilitate intramolecular electron transport. Besides the morphological effects, we observed that this coupling effect is another mechanism that can significantly enhance electron mobility (up to 100 times) through the incorporation of polymeric insulators in a series of donor systems. With this effect, we proposed a polymeric insulator blending approach to fabricate state-of-the-art pseudo-bilayer organic solar cells, and the PM6/L8-BO device exhibits a high efficiency of 19.50% (certificated 19.18%) with an improved interfacial electron transport property. This work not only offers a novel perspective on the quantum effect of polymeric insulators in organic semiconductors, but also presents a simple yet effective method for enhancing the performance of organic solar cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
伪双层有机太阳能电池中绝缘体-施主电子波函数耦合的验证效率为19.18。
聚合物绝缘体的应用在有机半导体领域取得了显著的成就。通过改变共混浓度,聚合物绝缘体在调节分子结构、薄膜结晶度和减轻缺陷状态方面表现出广泛的能力。然而,目前的研究表明,这种物理性能的改善主要归因于薄膜形态的增强,这似乎是加入绝缘体的必然结果。本文报道了有机半导体中聚合物绝缘体的一种普遍而全新的效应:绝缘体-给体电子波函数耦合效应。这种绝缘体可以与供体聚合物偶联以降低能量势垒水平并促进分子内电子传递。除了形态效应,我们观察到这种耦合效应是另一种机制,通过在一系列供体系统中加入聚合物绝缘体,可以显着提高电子迁移率(高达100倍)。利用这种效应,我们提出了一种聚合物绝缘体混合方法来制造最先进的伪双层有机太阳能电池,PM6/L8-BO器件的效率高达19.50%(认证为19.18%),并改善了界面电子传递性能。这项工作不仅为有机半导体中聚合物绝缘体的量子效应提供了一个新的视角,而且为提高有机太阳能电池的性能提供了一种简单而有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
National Science Review
National Science Review MULTIDISCIPLINARY SCIENCES-
CiteScore
24.10
自引率
1.90%
发文量
249
审稿时长
13 weeks
期刊介绍: National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178. National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.
期刊最新文献
US-China cooperation and competition in science and technology. Cretaceous chewing-louse eggs on enantiornithine birds. Element cycling by environmental viruses. Reversible biomass aerogels with flame retardancy and smart elasticity. Core factor of NEXT complex, ZCCHC8, governs the silencing of LINE1 during spermatogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1