{"title":"Ternary stochastic neuron - implemented with a single strained magnetostrictive nanomagnet.","authors":"Rahnuma Rahman, Supriyo Bandyopadhyay","doi":"10.1088/1361-6528/adac66","DOIUrl":null,"url":null,"abstract":"<p><p>Stochastic neurons are extremely efficient hardware for solving a large class of problems and usually come in two varieties - \"binary\" where the neuronal state varies randomly between two values of ±1 and \"analog\" where the neuronal state can randomly assume any value between -1 and +1. Both have their uses in neuromorphic computing and both can be implemented with low- or zero-energy-barrier nanomagnets whose random magnetization orientations in the presence of thermal noise encode the binary or analog state variables. In between these two classes is n-ary stochastic neurons, mainly ternary stochastic neurons (TSN) whose state randomly assumes one of three values (-1, 0, +1), which have proved to be efficient in pattern classification tasks such as recognizing handwritten digits from the MNIST data set or patterns from the CIFAR-10 data set. Here, we show how to implement a TSN with a zero-energy-barrier (shape isotropic) magnetostrictive nanomagnet subjected to uniaxial strain.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/adac66","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Stochastic neurons are extremely efficient hardware for solving a large class of problems and usually come in two varieties - "binary" where the neuronal state varies randomly between two values of ±1 and "analog" where the neuronal state can randomly assume any value between -1 and +1. Both have their uses in neuromorphic computing and both can be implemented with low- or zero-energy-barrier nanomagnets whose random magnetization orientations in the presence of thermal noise encode the binary or analog state variables. In between these two classes is n-ary stochastic neurons, mainly ternary stochastic neurons (TSN) whose state randomly assumes one of three values (-1, 0, +1), which have proved to be efficient in pattern classification tasks such as recognizing handwritten digits from the MNIST data set or patterns from the CIFAR-10 data set. Here, we show how to implement a TSN with a zero-energy-barrier (shape isotropic) magnetostrictive nanomagnet subjected to uniaxial strain.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.