Memristive ternary Łukasiewicz logic based on reading-based ratioed resistive states (3R).

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences Pub Date : 2025-01-01 Epub Date: 2025-01-16 DOI:10.1098/rsta.2023.0397
Feng Liu, Leon Brackmann, Xianyue Zhao, Nan Du, Rainer Waser, Stephan Menzel
{"title":"Memristive ternary Łukasiewicz logic based on reading-based ratioed resistive states (3R).","authors":"Feng Liu, Leon Brackmann, Xianyue Zhao, Nan Du, Rainer Waser, Stephan Menzel","doi":"10.1098/rsta.2023.0397","DOIUrl":null,"url":null,"abstract":"<p><p>The thirst for more efficient computational paradigms has reignited interest in computation in memory (CIM), a burgeoning topic that pivots on the strengths of more versatile logic systems. Surging ahead in this innovative milieu, multi-valued logic systems have been identified as possessing the potential to amplify storage density and computation efficacy. Notably, ternary logic has attracted widespread research owing to its relatively lower computational and storage complexity, offering a promising alternative to the traditional binary logic computation. This study provides insight into the feasibility of ternary logic in the CIM domain using resistive random-access memory (ReRAM) devices. Its multi-level programming capability making it an ideal conduit for the integration of ternary logic. We focus on ternary Łukasiewicz logic because its computational characteristics are highly suitable for mapping logic values with input and output signals. This approach is characterized by voltage-reading-based output for ease of subsequent utilization and computation and validated in 1T1R crossbar arrays in an integrated ReRAM chip (Memory Advanced Demonstrator 200 mm). In addition, the effect of variability of memristive devices on logical computation and the potential for parallel operation are also investigated.This article is part of the theme issue 'Emerging technologies for future secure computing platforms'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"383 2288","pages":"20230397"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11736464/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2023.0397","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The thirst for more efficient computational paradigms has reignited interest in computation in memory (CIM), a burgeoning topic that pivots on the strengths of more versatile logic systems. Surging ahead in this innovative milieu, multi-valued logic systems have been identified as possessing the potential to amplify storage density and computation efficacy. Notably, ternary logic has attracted widespread research owing to its relatively lower computational and storage complexity, offering a promising alternative to the traditional binary logic computation. This study provides insight into the feasibility of ternary logic in the CIM domain using resistive random-access memory (ReRAM) devices. Its multi-level programming capability making it an ideal conduit for the integration of ternary logic. We focus on ternary Łukasiewicz logic because its computational characteristics are highly suitable for mapping logic values with input and output signals. This approach is characterized by voltage-reading-based output for ease of subsequent utilization and computation and validated in 1T1R crossbar arrays in an integrated ReRAM chip (Memory Advanced Demonstrator 200 mm). In addition, the effect of variability of memristive devices on logical computation and the potential for parallel operation are also investigated.This article is part of the theme issue 'Emerging technologies for future secure computing platforms'.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
忆阻三元Łukasiewicz逻辑基于基于读取的比例电阻状态(3R)。
对更高效的计算范式的渴求重新点燃了人们对内存计算(CIM)的兴趣,这是一个新兴的主题,它以更通用的逻辑系统的优势为中心。在这个创新的环境中,多值逻辑系统已经被确定为具有扩大存储密度和计算效率的潜力。值得注意的是,三元逻辑由于其相对较低的计算和存储复杂度而引起了广泛的研究,为传统的二进制逻辑计算提供了一个有希望的替代方案。本研究提供了在CIM领域中使用电阻随机存取存储器(ReRAM)器件的三元逻辑的可行性。它的多级编程能力使它成为三元逻辑集成的理想渠道。我们专注于三元Łukasiewicz逻辑,因为它的计算特性非常适合将逻辑值与输入和输出信号进行映射。该方法的特点是基于电压读取的输出,便于后续使用和计算,并在集成ReRAM芯片(Memory Advanced Demonstrator 200mm)中的1T1R横条阵列中得到验证。此外,还研究了忆阻器件的可变性对逻辑计算和并行运算的影响。本文是“未来安全计算平台的新兴技术”主题的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
期刊最新文献
A comprehensive study of quantum arithmetic circuits. Automated polynomial formal verification using generalized binary decision diagram patterns. AxLaM: energy-efficient accelerator design for language models for edge computing. Editorial: new Editor-in-Chief and the 360th anniversary of Philosophical Transactions. Exploiting the lock: leveraging MiG-V's logic locking for secret-data extraction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1