Human recombinant tyrosinase destabilization caused by the double mutation R217Q/R402Q.

IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Protein Science Pub Date : 2025-02-01 DOI:10.1002/pro.70029
Sarah Toay, Narin Sheri, Ian MacDonald, Yuri V Sergeev
{"title":"Human recombinant tyrosinase destabilization caused by the double mutation R217Q/R402Q.","authors":"Sarah Toay, Narin Sheri, Ian MacDonald, Yuri V Sergeev","doi":"10.1002/pro.70029","DOIUrl":null,"url":null,"abstract":"<p><p>Oculocutaneous albinism is an autosomal recessive inherited disorder associated with mutations in the TYR gene. A single missense change in the tyrosinase (Tyr) could result in partial or complete loss of catalytic activity. The effect of two genetic mutations in the same Tyr as the molecule is less studied. Here, we study single mutation variants, R217Q, R402Q, and a double mutant variant, R217Q/R402Q, to establish a link between alterations at the level of the atomic model of the protein and the disease phenotype. Human recombinant intra-melanosomal Tyr domains of Tyr and three mutant variants were expressed in T. ni. Larvae were purified using the combination of IMAC and SEC, and diphenolase activities were measured. The Tyr homology model was equilibrated using 100 ns molecular dynamics and analyzed using computational methods. The purified R217Q and R217Q/R402Q variants show decreased catalytic activities compared to those of the Tyr and R402Q variants. The R217Q/R402Q variant has the lowest protein activity and is significantly reduced.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 2","pages":"e70029"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751874/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70029","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Oculocutaneous albinism is an autosomal recessive inherited disorder associated with mutations in the TYR gene. A single missense change in the tyrosinase (Tyr) could result in partial or complete loss of catalytic activity. The effect of two genetic mutations in the same Tyr as the molecule is less studied. Here, we study single mutation variants, R217Q, R402Q, and a double mutant variant, R217Q/R402Q, to establish a link between alterations at the level of the atomic model of the protein and the disease phenotype. Human recombinant intra-melanosomal Tyr domains of Tyr and three mutant variants were expressed in T. ni. Larvae were purified using the combination of IMAC and SEC, and diphenolase activities were measured. The Tyr homology model was equilibrated using 100 ns molecular dynamics and analyzed using computational methods. The purified R217Q and R217Q/R402Q variants show decreased catalytic activities compared to those of the Tyr and R402Q variants. The R217Q/R402Q variant has the lowest protein activity and is significantly reduced.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
由R217Q/R402Q双突变引起的重组酪氨酸酶失稳。
皮肤白化病是一种常染色体隐性遗传疾病,与TYR基因突变有关。酪氨酸酶(Tyr)的单个错义改变可能导致部分或完全丧失催化活性。在同一个Tyr中,两个基因突变对分子的影响研究较少。在这里,我们研究了单突变变体R217Q、R402Q和双突变变体R217Q/R402Q,以建立蛋白质原子模型水平上的改变与疾病表型之间的联系。在T. ni中表达了重组人黑素体内Tyr结构域和三个突变体。采用IMAC和SEC联合纯化幼虫,测定二酚酶活性。利用100ns分子动力学对Tyr同源性模型进行了平衡,并用计算方法对其进行了分析。与Tyr和R402Q变体相比,纯化的R217Q和R217Q/R402Q变体的催化活性降低。R217Q/R402Q变异蛋白活性最低,且显著降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Protein Science
Protein Science 生物-生化与分子生物学
CiteScore
12.40
自引率
1.20%
发文量
246
审稿时长
1 months
期刊介绍: Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution. Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics. The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication. Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).
期刊最新文献
A functional helix shuffled variant of the B domain of Staphylococcus aureus. AFFIPred: AlphaFold2 structure-based Functional Impact Prediction of missense variations. AggNet: Advancing protein aggregation analysis through deep learning and protein language model. Allosteric modulation of NF1 GAP: Differential distributions of catalytically competent populations in loss-of-function and gain-of-function mutants. Citrullination at the N-terminal region of MDM2 by the PADI4 enzyme.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1