Gil I Olgenblum, Claire J Stewart, Thomas W Redvanly, Owen M Young, Francis Lauzier, Sophia Hazlett, Shikun Wang, David A Rockcliffe, Stuart Parnham, Gary J Pielak, Daniel Harries
{"title":"Crowding beyond excluded volume: A tale of two dimers.","authors":"Gil I Olgenblum, Claire J Stewart, Thomas W Redvanly, Owen M Young, Francis Lauzier, Sophia Hazlett, Shikun Wang, David A Rockcliffe, Stuart Parnham, Gary J Pielak, Daniel Harries","doi":"10.1002/pro.70062","DOIUrl":null,"url":null,"abstract":"<p><p>Protein-protein interactions are modulated by their environment. High macromolecular solute concentrations crowd proteins and shift equilibria between protein monomers and their assemblies. We aim to understand the mechanism of crowding by elucidating the molecular-level interactions that determine dimer stability. Using <sup>19</sup>F-NMR spectroscopy, we studied the effects of various polyethylene glycols (PEGs) on the equilibrium thermodynamics of two protein complexes: a side-by-side and a domain-swap dimer. Analysis using our mean-field crowding model shows that, contrary to classic crowding theories, PEGs destabilize both dimers through enthalpic interactions between PEG and the monomers. The enthalpic destabilization becomes more dominant with increasing PEG concentration because the reduction in PEG mesh size with concentration diminishes the stabilizing effect of excluded volume interactions. Additionally, the partially folded domain-swap monomers fold in the presence of PEG, contributing to dimer stabilization at low PEG concentrations. Our results reveal that polymers crowd protein complexes through multiple conjoined mechanisms, impacting both their stability and oligomeric state.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 4","pages":"e70062"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912439/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70062","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Protein-protein interactions are modulated by their environment. High macromolecular solute concentrations crowd proteins and shift equilibria between protein monomers and their assemblies. We aim to understand the mechanism of crowding by elucidating the molecular-level interactions that determine dimer stability. Using 19F-NMR spectroscopy, we studied the effects of various polyethylene glycols (PEGs) on the equilibrium thermodynamics of two protein complexes: a side-by-side and a domain-swap dimer. Analysis using our mean-field crowding model shows that, contrary to classic crowding theories, PEGs destabilize both dimers through enthalpic interactions between PEG and the monomers. The enthalpic destabilization becomes more dominant with increasing PEG concentration because the reduction in PEG mesh size with concentration diminishes the stabilizing effect of excluded volume interactions. Additionally, the partially folded domain-swap monomers fold in the presence of PEG, contributing to dimer stabilization at low PEG concentrations. Our results reveal that polymers crowd protein complexes through multiple conjoined mechanisms, impacting both their stability and oligomeric state.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).