Ziyang Gao, Yuan Xiao, Fei Zhu, Bo Tao, Qiannan Zhao, Wei Yu, Jeffrey R Bishop, Qiyong Gong, Su Lui
{"title":"Neurobiological fingerprints of negative symptoms in schizophrenia identified by connectome-based modeling.","authors":"Ziyang Gao, Yuan Xiao, Fei Zhu, Bo Tao, Qiannan Zhao, Wei Yu, Jeffrey R Bishop, Qiyong Gong, Su Lui","doi":"10.1111/pcn.13782","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>As a central component of schizophrenia psychopathology, negative symptoms result in detrimental effects on long-term functional prognosis. However, the neurobiological mechanism underlying negative symptoms remains poorly understood, which limits the development of novel treatment interventions. This study aimed to identify the specific neural fingerprints of negative symptoms in schizophrenia.</p><p><strong>Methods: </strong>Based on resting-state functional connectivity data obtained in a large sample (n = 132) of first-episode drug-naïve schizophrenia patients (DN-FES), connectome-based predictive modeling (CPM) with cross-validation was applied to identify functional networks that predict the severity of negative symptoms. The generalizability of identified networks was then validated in an independent sample of n = 40 DN-FES.</p><p><strong>Results: </strong>A connectivity pattern significantly driving the prediction of negative symptoms (ρ = 0.28, MSE = 81.04, P = 0.012) was identified within and between networks implicated in motivation (medial frontal, subcortical, sensorimotor), cognition (default mode, frontoparietal, medial frontal) and error processing (medial frontal and cerebellum). The identified networks also predicted negative symptoms in the independent validation sample (ρ = 0.37, P = 0.018). Importantly, the predictive model was symptom-specific and robust considering the potential effects of demographic characteristics and validation strategies.</p><p><strong>Conclusions: </strong>Our study discovers and validates a comprehensive network model as the unique neural substrates of negative symptoms in schizophrenia, which provides a novel and comprehensive perspective to the development of target treatment strategies for negative symptoms.</p>","PeriodicalId":20938,"journal":{"name":"Psychiatry and Clinical Neurosciences","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychiatry and Clinical Neurosciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/pcn.13782","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: As a central component of schizophrenia psychopathology, negative symptoms result in detrimental effects on long-term functional prognosis. However, the neurobiological mechanism underlying negative symptoms remains poorly understood, which limits the development of novel treatment interventions. This study aimed to identify the specific neural fingerprints of negative symptoms in schizophrenia.
Methods: Based on resting-state functional connectivity data obtained in a large sample (n = 132) of first-episode drug-naïve schizophrenia patients (DN-FES), connectome-based predictive modeling (CPM) with cross-validation was applied to identify functional networks that predict the severity of negative symptoms. The generalizability of identified networks was then validated in an independent sample of n = 40 DN-FES.
Results: A connectivity pattern significantly driving the prediction of negative symptoms (ρ = 0.28, MSE = 81.04, P = 0.012) was identified within and between networks implicated in motivation (medial frontal, subcortical, sensorimotor), cognition (default mode, frontoparietal, medial frontal) and error processing (medial frontal and cerebellum). The identified networks also predicted negative symptoms in the independent validation sample (ρ = 0.37, P = 0.018). Importantly, the predictive model was symptom-specific and robust considering the potential effects of demographic characteristics and validation strategies.
Conclusions: Our study discovers and validates a comprehensive network model as the unique neural substrates of negative symptoms in schizophrenia, which provides a novel and comprehensive perspective to the development of target treatment strategies for negative symptoms.
期刊介绍:
PCN (Psychiatry and Clinical Neurosciences)
Publication Frequency:
Published 12 online issues a year by JSPN
Content Categories:
Review Articles
Regular Articles
Letters to the Editor
Peer Review Process:
All manuscripts undergo peer review by anonymous reviewers, an Editorial Board Member, and the Editor
Publication Criteria:
Manuscripts are accepted based on quality, originality, and significance to the readership
Authors must confirm that the manuscript has not been published or submitted elsewhere and has been approved by each author