Helen Bell Gorrod, Shahrul Mt-Isa, Jingyi Xuan, Kristel Vandormael, William Malbecq, Victoria Yorke-Edwards, Ian R White, Nicholas Latimer
{"title":"Adjusting for switches to multiple treatments: Should switches be handled separately or combined?","authors":"Helen Bell Gorrod, Shahrul Mt-Isa, Jingyi Xuan, Kristel Vandormael, William Malbecq, Victoria Yorke-Edwards, Ian R White, Nicholas Latimer","doi":"10.1177/09622802241300049","DOIUrl":null,"url":null,"abstract":"<p><p>Treatment switching is common in randomised controlled trials (RCTs). Participants may switch onto a variety of different treatments, all of which may have different treatment effects. Adjustment analyses that target hypothetical estimands - estimating outcomes that would have been observed in the absence of treatment switching - have focused primarily on a single type of switch. In this study, we assess the performance of applications of inverse probability of censoring weights (IPCW) and two-stage estimation (TSE) which adjust for multiple switches by either (i) adjusting for each type of switching separately ('treatments separate') or (ii) adjusting for switches combined without differentiating between switched-to treatments ('treatments combined'). We simulate 48 scenarios in which RCT participants may switch to multiple treatments. Switch proportions, treatment effects, number of switched-to treatments and censoring proportions were varied. Method performance measures included mean percentage bias in restricted mean survival time and the frequency of model convergence. Similar levels of bias were produced by treatments combined and treatments separate in both TSE and IPCW applications. In the scenarios examined, there was no demonstrable advantage associated with adjusting for each type of switch separately, compared with adjusting for all switches together.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802241300049"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241300049","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Treatment switching is common in randomised controlled trials (RCTs). Participants may switch onto a variety of different treatments, all of which may have different treatment effects. Adjustment analyses that target hypothetical estimands - estimating outcomes that would have been observed in the absence of treatment switching - have focused primarily on a single type of switch. In this study, we assess the performance of applications of inverse probability of censoring weights (IPCW) and two-stage estimation (TSE) which adjust for multiple switches by either (i) adjusting for each type of switching separately ('treatments separate') or (ii) adjusting for switches combined without differentiating between switched-to treatments ('treatments combined'). We simulate 48 scenarios in which RCT participants may switch to multiple treatments. Switch proportions, treatment effects, number of switched-to treatments and censoring proportions were varied. Method performance measures included mean percentage bias in restricted mean survival time and the frequency of model convergence. Similar levels of bias were produced by treatments combined and treatments separate in both TSE and IPCW applications. In the scenarios examined, there was no demonstrable advantage associated with adjusting for each type of switch separately, compared with adjusting for all switches together.
期刊介绍:
Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)